Trang chủ Lớp 11 SBT Toán lớp 11 (sách cũ) Bài 4.4 trang 125 Sách bài tập Đại số và giải tích...

Bài 4.4 trang 125 Sách bài tập Đại số và giải tích 11: Tìm số hạng đầu và công bội của cấp số nhân...

Tìm số hạng đầu và công bội của cấp số nhân . Bài 4.4 trang 125 Sách bài tập (SBT) Đại số và giải tích 11 - Bài 4. Cấp số nhân

Tìm số hạng đầu và công bội của cấp số nhân (un) biết 

a)

\(\left\{ \matrix{
{u_5} - {u_1} = 15 \hfill \cr
{u_4} - {u_2} = 6 \hfill \cr} \right.\);                           

b)

\(\left\{ \matrix{
{u_2} - {u_4} + {u_5} = 10 \hfill \cr
{u_3} - {u_5} + {u_6} = 20 \hfill \cr} \right.\) .

Giải:

a)      Ta có hệ 

\(\left\{ \matrix{
{u_1}{q^4} - {u_1} = 15 \hfill \cr
{u_1}{q^3} - {u_1}q = 6 \hfill \cr} \right.\)

Advertisements (Quảng cáo)

hay 

\(\left\{ \matrix{
{u_1}\left( {{q^4} - 1} \right) = 15 \hfill \cr
{u_1}\left( {{q^3} - q} \right) = 6 \hfill \cr} \right.{\rm{ }} \)    (1)

Do (1) nên \(q \ne  \pm 1\) suy ra \({{15} \over 6} = {{{q^4} - 1} \over {q\left( {{q^2} - 1} \right)}} = {{{q^2} + 1} \over q}\)

Biến đổi về phương trình \(2{q^2} - 5q + 2 = 0\)

Giải ra được q = 2 và \(q = {1 \over 2}\)

Nếu q = 2 thì u1 = 1 

Nếu \(q = {1 \over 2}\) thì u= -16

b)      ĐS: \({u_1} = 1,q = 2\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)