Trang chủ Lớp 11 SGK Toán 11 - Kết nối tri thức Bài 2.11 trang 51 Toán 11 tập 1 – Kết nối tri...

Bài 2.11 trang 51 Toán 11 tập 1 - Kết nối tri thức: Một cấp số cộng cố số hạng đầu bằng 5 và công sai bằng 2...

Gọi n là số các số hạng đầu tiên trong cấp số cộng.Dựa vào công thức tính tổng các số hạng trong cấp số cộng: Phân tích và giải bài 2.11 trang 51 SGK Toán 11 tập 1 - Kết nối tri thức Bài 6. Cấp số cộng. Một cấp số cộng cố số hạng đầu bằng 5 và công sai bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số cộng này để có tổng bằng 2700?...

Question - Câu hỏi/Đề bài

Một cấp số cộng cố số hạng đầu bằng 5 và công sai bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số cộng này để có tổng bằng 2700?

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Gọi n là số các số hạng đầu tiên trong cấp số cộng.

Dựa vào công thức tính tổng các số hạng trong cấp số cộng: \({S_n} = \frac{n}{2}\left[ {2{u_n} + \left( {n - 1} \right)d} \right]\) đế tính n.

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

Ta có: \({S_n} = \frac{n}{2}\left[ {2 \times 5 + \left( {n - 1} \right) \times 2} \right] = 2700\;\)

\( \Leftrightarrow \frac{n}{2}\left( {8 + 2n} \right) = 2700\;\)

\( \Leftrightarrow {n^2} + 4n - 2700 = 0\;\)

\( \Leftrightarrow \left[ \begin{array}{l}n = - 54(L)\\n = 50(TM)\end{array} \right.\)

Vậy phải lấy tổng 50 số hạng đầu

Advertisements (Quảng cáo)