Gọi n là số các số hạng đầu tiên trong cấp số cộng.Dựa vào công thức tính tổng các số hạng trong cấp số cộng: Phân tích và giải bài 2.11 trang 51 SGK Toán 11 tập 1 - Kết nối tri thức Bài 6. Cấp số cộng. Một cấp số cộng cố số hạng đầu bằng 5 và công sai bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số cộng này để có tổng bằng 2700?...
Một cấp số cộng cố số hạng đầu bằng 5 và công sai bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số cộng này để có tổng bằng 2700?
Gọi n là số các số hạng đầu tiên trong cấp số cộng.
Dựa vào công thức tính tổng các số hạng trong cấp số cộng: \({S_n} = \frac{n}{2}\left[ {2{u_n} + \left( {n - 1} \right)d} \right]\) đế tính n.
Advertisements (Quảng cáo)
Ta có: \({S_n} = \frac{n}{2}\left[ {2 \times 5 + \left( {n - 1} \right) \times 2} \right] = 2700\;\)
\( \Leftrightarrow \frac{n}{2}\left( {8 + 2n} \right) = 2700\;\)
\( \Leftrightarrow {n^2} + 4n - 2700 = 0\;\)
\( \Leftrightarrow \left[ \begin{array}{l}n = - 54(L)\\n = 50(TM)\end{array} \right.\)
Vậy phải lấy tổng 50 số hạng đầu