Trang chủ Lớp 11 SGK Toán 11 - Kết nối tri thức Bài 7.18 trang 53 Toán 11 tập 2 – Kết nối tri...

Bài 7.18 trang 53 Toán 11 tập 2 - Kết nối tri thức: Cho hình hộp chữ nhật ABCD. A’B’C’D’. Chứng minh rằng (BDD′B′) \( \bot \) (ABCD)...

Hai mặt phẳng được gọi là vuông góc nếu một đường thẳng nằm trong mặt phẳng này vuông góc với mặt phẳng kia. Giải chi tiết bài 7.18 trang 53 SGK Toán 11 tập 2 - Kết nối tri thức Bài 25. Hai mặt phẳng vuông góc. Cho hình hộp chữ nhật ABCD. A'B'C'D&#039...

Question - Câu hỏi/Đề bài

Cho hình hộp chữ nhật ABCD. A’B’C’D’.

a) Chứng minh rằng (BDD′B′) \( \bot \) (ABCD).

b) Xác định hình chiếu của AC′ trên mặt phẳng (ABCD).

c) Cho AB = a, BC = b, CC′ = c. Tính AC′.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Hai mặt phẳng được gọi là vuông góc nếu một đường thẳng nằm trong mặt phẳng này vuông góc với mặt phẳng kia.

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

a) Ta có \(BB’ \bot \left( {ABCD} \right);BB’ \subset \left( {BDD’B’} \right) \Rightarrow \left( {BDD’B’} \right) \bot \left( {ABCD} \right)\)

b) A là hình chiếu của A trên (ABCD)

C là hình chiếu của C’ trên (ABCD) do \(CC’ \bot \left( {ABCD} \right)\)

\( \Rightarrow \) AC là hình chiếu của AC’ trên (ABCD)

c) Xét tam giác ABC vuông tại B có

\(A{C^2} = A{B^2} + B{C^2} = {a^2} + {b^2} \Rightarrow AC = \sqrt {{a^2} + {b^2}} \)

Xét tam giác AC’C vuông tại C có

\(A{C’^2} = C{C’^2} + A{C^2} = {c^2} + {a^2} + {b^2} \Rightarrow A’C = \sqrt {{a^2} + {b^2} + {c^2}} \)

Advertisements (Quảng cáo)