Hai mặt phẳng được gọi là vuông góc nếu một đường thẳng nằm trong mặt phẳng này vuông góc với mặt phẳng kia. Giải chi tiết bài 7.18 trang 53 SGK Toán 11 tập 2 - Kết nối tri thức Bài 25. Hai mặt phẳng vuông góc. Cho hình hộp chữ nhật ABCD. A'B'C'D'...
Cho hình hộp chữ nhật ABCD. A’B’C’D’.
a) Chứng minh rằng (BDD′B′) ⊥ (ABCD).
b) Xác định hình chiếu của AC′ trên mặt phẳng (ABCD).
c) Cho AB = a, BC = b, CC′ = c. Tính AC′.
Hai mặt phẳng được gọi là vuông góc nếu một đường thẳng nằm trong mặt phẳng này vuông góc với mặt phẳng kia.
Advertisements (Quảng cáo)
a) Ta có BB′⊥(ABCD);BB′⊂(BDD′B′)⇒(BDD′B′)⊥(ABCD)
b) A là hình chiếu của A trên (ABCD)
C là hình chiếu của C’ trên (ABCD) do CC′⊥(ABCD)
⇒ AC là hình chiếu của AC’ trên (ABCD)
c) Xét tam giác ABC vuông tại B có
AC2=AB2+BC2=a2+b2⇒AC=√a2+b2
Xét tam giác AC’C vuông tại C có
AC′2=CC′2+AC2=c2+a2+b2⇒A′C=√a2+b2+c2