Trang chủ Lớp 11 SGK Toán 11 - Kết nối tri thức Giải mục 2 trang 8, 9, 10 Toán 11 tập 1 –...

Giải mục 2 trang 8, 9, 10 Toán 11 tập 1 - Kết nối tri thức: Trạm vũ trụ Quốc tế ISS (tên Tiếng Anh...

Phân tích và giải LT 3, HĐ 3, VD 1 mục 2 trang 8,9,10 SGK Toán 11 tập 1 - Kết nối tri thức Bài 1. Giá trị lượng giác của góc lượng giác. Đổi từ độ sang rađian các số đo sau...Trạm vũ trụ Quốc tế ISS (tên Tiếng Anh

Luyện tập 3

a) Đổi từ độ sang rađian các số đo sau: \({360^ \circ }, - {450^ \circ }\)

b) Đổi từ rađian sang độ các số đo sau: \(3\pi , - \frac{{11\pi }}{5}\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Áp dụng công thức:

\({\alpha ^ \circ } = \alpha .\frac{\pi }{{180}}rad\) ; \(\alpha \,rad = \alpha .{\left( {\frac{{180}}{\pi }} \right)^ \circ }\)

Answer - Lời giải/Đáp án

a) Ta có:

\(\begin{array}{l}{360^ \circ } = 360.\frac{\pi }{{180}} = 2\pi \\ - {450^ \circ } = -450.\frac{\pi }{{180}} = -\frac{5}{2}\pi \end{array}\)

b)\(3\pi = 3\pi .{\left( {\frac{{180}}{\pi }} \right)^ \circ } = {540^ \circ }\)

\( - \frac{{11\pi }}{5} = \left( { - \frac{{11\pi }}{5}} \right).{\left( {\frac{{180}}{\pi }} \right)^ \circ } = - {396^ \circ }\)


Hoạt động 3

Cho đường tròn bán kính R.

a) Độ dài của cung tròn có số đo bằng 1 rad là bao nhiêu

b) Tính độ dài l của cung tròn có số đo \(\alpha \)rad.

Advertisements (Quảng cáo)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Áp dụng công thức tính độ dài cung tròn.

Answer - Lời giải/Đáp án

a) Độ dài của cung tròn có số đo bằng 1 rad là bằng bán kính R.

b) Độ dài l của cung tròn có số đo \(\alpha \) rad: \(l = R\alpha \).


Vận dụng 1

Trạm vũ trụ Quốc tế ISS (tên Tiếng Anh: International Space Station) nằm trong quỹ đạo tròn cách bề mặt Trái Đất khoảng 400 km (H.1.1). Nếu trạm mặt đất theo dõi được trạm vũ trụ ISS khi nó nằm trong góc 45° ở tâm của quỹ đạo tròn này phía trên ăng-ten theo dõi, thì trạm vũ trụ ISS đã di chuyển được bao nhiêu kilômét trong khi nó đang được trạm mặt đất theo dõi? Giả sử rằng bán kính của Trái Đất là 6 400 km. Làm tròn kết quả đến hàng đơn vị.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Một cung của đường tròn bán kính R và số đo \(\alpha \) rad thì có độ dài \(l = R\alpha \).

Answer - Lời giải/Đáp án

Bán kính quỹ đạo của trạm vũ trụ quốc tế là R = 6 400 + 400 = 6 800 (km).

Đổi \(45{}^\circ =45\cdot \frac{\pi }{180}=\frac{\pi }{4}\).

Vậy trong khi được trạm mặt đất theo dõi, trạm ISS đã di chuyển một quãng đường có độ dài là \(l = R\alpha \text{ = }6\,800\cdot \frac{\pi }{4}\approx 5\,340,708\approx 5\,341\,(km)\).

Advertisements (Quảng cáo)