Trang chủ Lớp 11 SGK Toán 11 - Kết nối tri thức Giải mục 6 trang 51, 52 Toán 11 tập 2 – Kết...

Giải mục 6 trang 51, 52 Toán 11 tập 2 - Kết nối tri thức: Trong trường hợp hình chóp đã cho là đều...

Lời giải bài tập, câu hỏi HĐ11, HĐ12, LT5 , HĐ13, CH2 mục 6 trang 51, 52 SGK Toán 11 tập 2 - Kết nối tri thức Bài 25. Hai mặt phẳng vuông góc. Tháp lớn tại Bảo tàng Louvre ở Paris (H. 7... Trong trường hợp hình chóp đã cho là đều

Hoạt động11

Tháp lớn tại Bảo tàng Louvre ở Paris (H.7.66) (với kết cấu kính và kim loại) có dạng hình chóp với đây là hình vuông có cạnh bằng 34 m, các cạnh bên bằng nhau và có độ dài xấp xỉ 32,3 m (theo Wikipedia.org).

Giải thích vì sao hình chiếu của đỉnh trên đây là tâm của đáy tháp.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Dựa vào kết quả bài 7.13 trang 43 là hai đường xiên bằng nhau khi và chỉ khi hình chiếu của chúng cũng bằng nhau

Answer - Lời giải/Đáp án

Tháp lớn tại Bảo tàng Louvre ở Paris có dạng hình chóp với các cạnh bên bằng nhau nên hình chiếu của đỉnh trên đáy tháp sẽ cách đều 4 đỉnh ở đáy mà đáy là hình vuông do đó hình chiếu của đỉnh là tâm của đáy tháp.


Hoạt động12

Cho hình chóp S.A1A2...An. Gọi O là hình chiếu của S trên mặt phẳng (A1A2...An).

a) Trong trường hợp hình chóp đã cho là đều, vị trí của điểm O có gì đặc biệt đối với đa giác đều A1A2...An?

b) Nếu đa giác A1A2...An là đều và O là tâm của đa giác đó thì hình chóp đã cho có gì đặc biệt?

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Dựa vào kết quả bài 7.13 trang 43 là hai đường xiên bằng nhau khi và chỉ khi hình chiếu của chúng cũng bằng nhau

Answer - Lời giải/Đáp án

a) Hình chóp S.A1A2...An đều nên SA1 = SA2 = … = SAn

Vì O là hình chiếu của S trên mặt phẳng (A1A2...An) nên OA1, OA2, …, OAn lần lượt là hình chiếu của SA1, SA2, …, SAn

\( \Rightarrow \) OA1 = OA2 = … = OAn \( \Rightarrow \) O là tâm đường tròn ngoại tiếp đa giác đáy A1A2...An

b) Nếu đa giác A1A2...An là đều và O là tâm của đa giác đó thì OA1 = OA2 = … = OAn \( \Rightarrow \) SA1 = SA2 = … = SAn \( \Rightarrow \) Hình chóp S.A1A2...An là hình chóp đều


Luyện tập5

Cho hình chóp tam giác đều S.ABC, cạnh đáy bằng a, cạnh bên bằng \(a\sqrt {\frac{5}{{12}}} .\) Tính số đo của góc nhị diện [S, BC, A].

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Từ một điểm O bất kì thuộc cạnh a của góc nhị diện [P, a, Q], vẽ các tia Ox, Oy tương ứng thuộc (P), (Q) và vuông góc với a. Góc xOy được gọi là một góc phẳng của góc nhị diện [P, a, Q].

Answer - Lời giải/Đáp án

Vì hình chóp S.ABC đều, gọi G là hình chiếu của S trên (ABC) nên G là tâm của đáy ABC là tam giác đều do đó G cũng là trọng tâm hay trực tâm của tam giác ABC.

Gọi AG cắt BC tại D

Ta có \(AG \bot BC,SG \bot BC \Rightarrow BC \bot \left( {SAD} \right);SD \subset \left( {SAD} \right) \Rightarrow BC \bot SD\)

\(BC \bot AD\) (G là trực tâm)

\( \Rightarrow \left[ {S,BC,A} \right] = \left( {AD,SD} \right) = \widehat {SDA}\)

Advertisements (Quảng cáo)

Tam giác ABC đều cạnh a nên \(AD = \frac{{a\sqrt 3 }}{2}\)

Mà G là trọng tâm nên \(GD = \frac{1}{3}AD = \frac{{a\sqrt 3 }}{6}\)

Xét tam giác SDC vuông tại D có

\(\begin{array}{l}S{D^2} + D{C^2} = S{C^2}\\ \Leftrightarrow S{D^2} + {\left( {\frac{a}{2}} \right)^2} = {\left( {a\sqrt {\frac{5}{{12}}} } \right)^2}\\ \Leftrightarrow S{D^2} = \frac{{{a^2}}}{6} \Leftrightarrow SD = \frac{{a\sqrt 6 }}{6}\end{array}\)

Xét tam giác SGD vuông tại G có

\(\cos \widehat {SGD} = \frac{{GD}}{{SD}} = \frac{{\sqrt 2 }}{2} \Rightarrow \widehat {SGD} = {45^0}\)

Vậy số đo của góc nhị diện [S, BC, A] bằng 450.


Hoạt động13

Cho hình chóp đều S.A1A2...An. Một mặt phẳng không đi qua S và song song với mặt phẳng đáy, cắt các cạnh SA1, SA2,.... SAn, tương ứng tai B1, B2,..., Bn

a) Giải thích vì sao S. B1B2...Bn là một hình chóp đều.

b) Gọi H là tâm của đa giác A1A2...An. Chứng minh rằng đường thẳng SH đi qua tâm K của đa giác đều B1B2...Bn, và HK vuông góc với các mặt phẳng (A1A2...An), (B1B2...Bn)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

- Hình chóp đều là hình chóp có đáy là đa giác đều và các cạnh bên bằng nhau.

- Đường thẳng vuông góc với một mặt phẳng thì đường thẳng sẽ vuông góc với mọi mặt phẳng song song với mặt phẳng đó.

- Qua một điểm nằm ngoài đường thẳng chỉ có duy nhất 1 đường thẳng vuông góc với một mặt phẳng cho trước.

Answer - Lời giải/Đáp án

a) Vì mặt phẳng không đi qua S và song song với mặt phẳng đáy, cắt các cạnh SA1, SA2,.... SAn, tương ứng tại B1, B2,..., Bn nên theo định lý Talet trong từng tam giác SA1A2, …, SAn-1An thì \(\frac{{S{B_1}}}{{S{A_1}}} = \frac{{S{B_2}}}{{S{A_2}}} = \frac{{{B_1}{B_2}}}{{{A_1}{A_2}}} = ... = \frac{{S{B_n}}}{{S{A_n}}}\) mà S.A1A2...An là hình chóp đều nên S.B1B2...Bn cũng là một hình chóp đều.

b) Ta có \(SH \bot \left( {{A_1}{A_2}...{A_n}} \right)\) (H là tâm của đa giác A1A2...An)

Mà \(\left( {{A_1}{A_2}...{A_n}} \right)//\left( {{B_1}{B_2}...{B_n}} \right)\)

\( \Rightarrow \)\(SH \bot \left( {{B_1}{B_2}...{B_n}} \right)\)

Mà \(SK \bot \left( {{B_1}{B_2}...{B_n}} \right)\) (K là tâm của đa giác B1B2...Bn)

\( \Rightarrow \) SH trùng SK

Vậy đường thẳng SH đi qua tâm K của đa giác đều B1B2...Bn, và HK vuông góc với các mặt phẳng (A1A2...An), (B1B2...Bn)


Câu hỏi2

Hình chóp cụt đều có các cạnh bên bằng nhau hay không?

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Dựa vào kết quả của hoạt động 13 trang 52

Answer - Lời giải/Đáp án

Hình chóp cụt đều có các cạnh bên bằng nhau vì theo hoạt động 13 có SB1 = SB2 = … = SBn , SA1= SA2=.... = SAn nên B1A1=…= BnAn

Advertisements (Quảng cáo)