Trang chủ Lớp 11 Toán lớp 11 Nâng cao (sách cũ) Câu 15 trang 109 SGK Đại số và Giải tích 11 Nâng...

Câu 15 trang 109 SGK Đại số và Giải tích 11 Nâng cao, Cho dãy số (un) xác định bởi...

Cho dãy số (un) xác định bởi . Câu 15 trang 109 SGK Đại số và Giải tích 11 Nâng cao - Bài 2. Dãy số

Bài 15. Cho dãy số (un) xác định bởi

\({u_1} = 3\,\text{ và }\,{u_{n + 1}} = {u_n} + 5\) với mọi \(n ≥ 1\).

a. Hãy tính u2, u4 và u6.

b. Chứng minh rằng \(u_n= 5n – 2\) với mọi \(n ≥ 1\).

a. Ta có:

\(\eqalign{
& {u_2} = {u_1} + 5 = 8 \cr
& {u_3} = {u_2} + 5 = 13 \cr
& {u_4} = {u_3} + 5 = 18 \cr
& {u_5} = {u_4} + 5 = 23 \cr
& {u_6} = {u_5} + 5 = 28 \cr} \)

b. Ta sẽ chứng minh : \(u_n= 5n – 2\) (1) với mọi \(n \in \mathbb N^*\), bằng phương pháp qui nạp.

+) Với \(n = 1\), ta có \(u_1= 3 = 5.1 – 2\)

Advertisements (Quảng cáo)

Vậy (1) đúng khi \(n = 1\).

+) Giả sử (1) đúng với \(n = k, k\in \mathbb N^*\), tức là:

\(u_k=5k-2\)

+) Ta sẽ chứng minh (1) cũng đúng khi \(n = k + 1\)

Thật vậy, từ công thức xác định dãy số (un) và giả thiết qui nạp ta có :

\({u_{k + 1}} = {u_k} + 5 = 5k - 2 + 5 = 5\left( {k + 1} \right) - 2\)

Do đó (1) đúng với mọi \(n \in \mathbb N^*\).

 Baitapsgk.com

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)