Chứng minh rằng . Câu 19 trang 114 SGK Đại số và Giải tích 11 Nâng cao - Bài 3. Cấp số cộng
Bài 19. Chứng minh rằng mỗi dãy số sau là một cấp số cộng và hãy xác định công sai của cấp số cộng đó:
a. Dãy số (un) với \(u_n= 19n – 5 \);
b. Dãy số (un) với \(u_n= an + b\), trong đó a và b là các hằng số.
a. Ta có:
Advertisements (Quảng cáo)
\({u_{n + 1}} - {u_n} = 19\left( {n + 1} \right) - 5 - \left( {19n - 5} \right) = 19\) với mọi \(n ≥ 1\).
Do đó \((u_n)\) là một cấp số cộng với công sai \(d = 19\).
b. Ta có:
\({u_{n + 1}} - {u_n} = a\left( {n + 1} \right) + b - \left( {an + b} \right) = a\) với mọi \(n ≥ 1\).
Do đó \((u_n)\) là một cấp số cộng với công sai \(d = a\).