Trang chủ Lớp 11 Toán lớp 11 Nâng cao (sách cũ) Câu 29 trang 120 SGK Đại số và Giải tích 11 Nâng...

Câu 29 trang 120 SGK Đại số và Giải tích 11 Nâng cao, Trong các dãy số dưới đây...

Trong các dãy số dưới đây. Câu 29 trang 120 SGK Đại số và Giải tích 11 Nâng cao - Bài 4. Cấp số nhân

Bài 29. Trong các dãy số dưới đây, dãy số nào là cấp số nhân ? Hãy xác định công bội của cấp số nhân đó.

a. Dãy số \(1, -2, 4, -8, 16, -32, 64\)

b. Dãy số (un) với \({u_n} = n{.6^{n + 1}}\)

c. Dãy số (vn) với \({v_n} = {\left( { - 1} \right)^n}{.3^{2n}}\)

d. Dãy số (xn) với \({x_n} = {\left( { - 4} \right)^{2n + 1}}\) .

Advertisements (Quảng cáo)

a. Dãy số đã cho là một cấp số nhân với công bội \(q = -2\).

b.\({{{u_{n + 1}}} \over {{u_n}}} = {{6\left( {n + 1} \right)} \over n}\) với mọi \(n ≥ 1\). Suy ra (un) không phải là cấp số nhân.

c.\({{{v_{n + 1}}} \over {{v_n}}} = {{{{\left( { - 1} \right)}^{n + 1}}{{.3}^{2\left( {n + 1} \right)}}} \over {{{\left( { - 1} \right)}^n}{{.3}^{2n}}}} = - 9\) với mọi \(n ≥ 1\). Suy ra (vn) là một cấp số nhân với công bội \(q = -9\).

d. \({{{x_{n + 1}}} \over {{x_n}}} = {{{{\left( { - 4} \right)}^{2n + 3}}} \over {{{\left( { - 4} \right)}^{2n + 1}}}} = 16\) với mọi \(n ≥ 1\). Suy ra (xn) là một cấp số nhân với công bội \(q = 16\).

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)