Trang chủ Lớp 11 Toán lớp 11 Nâng cao (sách cũ) Câu 36 trang 121 SGK Đại số và Giải tích 11 Nâng...

Câu 36 trang 121 SGK Đại số và Giải tích 11 Nâng cao, Tính các tổng sau...

Tính các tổng sau :. Câu 36 trang 121 SGK Đại số và Giải tích 11 Nâng cao - Bài 4. Cấp số nhân

Bài 36. Tính các tổng sau :

a. Tổng tất cả các số hạng của một cấp số nhân, biết rằng số hạng đầu bằng 18, số hạng thứ hai bằng 54 và số hạng cuối bằng 39 366;

b. Tổng tất cả các số hạng của một cấp số nhân, biết rằng số hạng đầu bằng \({1 \over {256}}\) , số hạng thứ hai bằng \({{ - 1} \over {512}}\) và số hạng cuối bằng  \({1 \over {1048576}}\)

a. Gọi q là công bội của cấp số nhân đã cho.

Ta có:  \(q = {{{u_2}} \over {{u_1}}} = {{54} \over {18}} = 3\)

Advertisements (Quảng cáo)

Giả sử cấp số nhân có n số hạng ta có :

\(\eqalign{
& 39366 = {u_n} = {u_1}.{q^{n - 1}} = {18.3^{n - 1}} \cr
& \Rightarrow {3^{n - 1}} = {{39366} \over {18}} = 2187 = {3^7} \Rightarrow n = 8 \cr
& \Rightarrow {S_8} = {u_1}.{{1 - {q^8}} \over {1 - q}} = 18.{{1 - {3^8}} \over {1 - 3}} = 59040 \cr} \)

b. Tương tự :

\(\eqalign{
& q = {{{u_2}} \over {{u_1}}} = - {1 \over 2} \cr
& {u_n} = {u_1}.{q^{n - 1}} \Rightarrow {1 \over {1048576}} = {1 \over {256}}.{\left( { - {1 \over 2}} \right)^{n - 1}} \cr
& \Rightarrow n = 13 \Rightarrow {S_{13}} = {1 \over {256}}.{{1 - {{\left( {{{ - 1} \over 2}} \right)}^{13}}} \over {1 - \left( { - {1 \over 2}} \right)}} = {{2731} \over {{2^{10}}}} = {{2731} \over {1048576}} \cr} \)

 Baitapsgk.com

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)