Trang chủ Lớp 11 Toán lớp 11 Nâng cao (sách cũ) Câu 37 trang 121 Đại số và Giải tích 11 Nâng cao,...

Câu 37 trang 121 Đại số và Giải tích 11 Nâng cao, Bốn góc lượng giác...

Bốn góc lượng giác . Câu 37 trang 121 SGK Đại số và Giải tích 11 Nâng cao - Bài 4. Cấp số nhân

Bài 37. Bốn góc lượng giác có số đo dương lâp thành một cấp số nhân có tổng là \(360^0\). Hãy tìm bốn góc đó, biết rằng số đo của góc lớn nhất gấp 8 lần số đo của góc nhỏ nhất.

Kí hiệu A, B, C, D là số đo bốn góc (tính theo đơn vị độ) của tứ giác lồi đã cho. Không mất tổng quát, giả sử \(A ≤ B ≤ C ≤ D\). Khi đó, từ giả thiết của bài toán ta có \(D = 8A\), và A, B, C, D theo thứ tự đó lập thành một cấp số nhân.

Gọi q là công bội của cấp số nhân đó, ta có :

Advertisements (Quảng cáo)

\(8A = D = A.q^3⇔ q = 2\).

Do đó \(360 = A + B + C + D = A.{{1 - {2^4}} \over {1 - 2}} = 15A \Leftrightarrow A = 24^0\)

Suy ra \(B = A.2 = 48^0\), \(C = A.2^2= 96^0\) và \(D = A.2^3= 192\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)