Trang chủ Lớp 11 Toán lớp 11 Nâng cao (sách cũ) Câu 41 trang 122 SGK Đại số và Giải tích 11 Nâng...

Câu 41 trang 122 SGK Đại số và Giải tích 11 Nâng cao, Số hạng thứ hai...

Số hạng thứ hai. Câu 41 trang 122 SGK Đại số và Giải tích 11 Nâng cao - Bài 4. Cấp số nhân

Bài 41. Số hạng thứ hai, số hạng đầu và số hạng thứ ba của một cấp số cộng với công sai khác 0 theo thứ tự đó lập thành một cấp số nhân. Hãy tìm công bội của cấp số nhân đó.

Kí hiệu (un) là cấp số cộng đã cho và gọi q là công bội của cấp số nhân u2, u1, u3. Theo đề bài, ta cần tính q.

Vì cấp số cộng (un) có công sai khác 0 nên các số u1, u2, u3 đôi một khác nhau, suy ra q ∉ {0, 1} và u2 ≠ 0.

Advertisements (Quảng cáo)

Từ các giả thiết của đề bài ta có u1 = u2q, u3 = u2q2 và u1 + u3 = 2u2, suy ra

\({u_2}\left( {q + {q^2}} \right) = 2{u_2} \Leftrightarrow {q^2} + q - 2 = 0\,\left( {\text{vì }\,{u_2} \ne 0} \right) \Leftrightarrow q = - 2\,\left( {\text{vì }\,q \ne 1} \right)\)

 Baitapsgk.com

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)