Trang chủ Lớp 11 Toán lớp 11 (sách cũ) Bài 2 trang 113 SGK Hình học 11: Bài 4. Hai mặt...

Bài 2 trang 113 SGK Hình học 11: Bài 4. Hai mặt phẳng vuông góc...

Bài 2 trang 113 SGK Hình học 11: Bài 4. Hai mặt phẳng vuông góc. Cho hai mặt phẳng

Bài 2. Cho hai mặt phẳng \((\alpha)\) và \((\beta)\) vuông góc với nhau. Người ta lấy trên giao tuyến \(\Delta\) của hai mặt phẳng đó hai điểm \(A\) và \(B\) sao cho \(AB=8cm\). Gọi \(C\) là một điểm trên \((\alpha)\) và \(D\) là một điểm trên \((\beta)\) sao cho \(AC\) và \(BD\) cùng vuông góc với giao tuyến \(\Delta\) và \(AC=6cm\), \(BD=24cm\). Tính độ dài đoạn \(CD\).

\(\left. \matrix{
(\alpha ) \bot (\beta ) \hfill \cr
AC \bot \Delta \hfill \cr
AC \subset (\alpha ) \hfill \cr} \right\} \Rightarrow AC \bot (\beta )\)

Do đó \(AC\bot AD\) hay tam giác \(ACD\) vuông tại \(A\)

Áp dụng định lí Pytago vào tam giác \(ACD\) ta được:

Advertisements (Quảng cáo)

$$D{C^2} = A{C^2} + A{D^2}(1)$$  

Theo giả thiết \(BD\) vuông góc với giao tuyến nên \(BD\bot AB\) hay tam giác \(ABD\) vuông tại \(B\).

 Áp dụng định lí Pytago vào tam giác \(ABD\) ta được:

$$A{D^2} = A{B^2} + B{D^2}(2)$$ 

Từ (1) và (2) suy ra: \(D{C^2} = A{C^2} + A{B^2} + B{D^2} = {6^2} + {8^2} + {24^2} = 676\)

\( \Rightarrow DC = \sqrt {676}  = 26cm\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)