Bài 4. Tìm cấp số nhân có sáu số hạng, biết rằng tổng của năm số hạng đầu là \(31\) và tổng của năm số hạng sau là \(62\).
Hướng dẫn giải:
Giả sử có cấp số nhân: \({u_1},{u_2},{u_3},{u_4},{u_5},{u_6}\)
Theo giả thiết ta có:
\({u_1} + {u_2} + {u_3} + {u_4} + {u_5} = 31\). (1)
\({u_2} + {u_3} + {u_4} + {u_5} + {u_6} = 62\). (2)
Advertisements (Quảng cáo)
Nhân hai vế của (1) với \(q\), ta được: \({u_1}q + {u_2}q + {u_3}q + {u_4}q + {u_5}q = 31q\)
hay \({u_2} + {u_3} + {u_4} + {u_5} + {u_6} = 31q\)
Suy ra \(62 = 31.q\) hay \(q = 2\).
Ta có \(S_5= 31 = {{{u_1}(1 - {2^5})} \over {1 - 2}}\) nên suy ra \(u_1= 1\).
Vậy ta có cấp số nhân \(1, 2, 4, 8, 16, 32\).