Hằng tháng, một công ty chuyên sản xuất mặt hàng A phải trả chi phí cố định là 50 triệu đồng (để thuê mặt bằng và lương nhân viên) và chi phí cho nguyên liệu là 10000x (đồng) với x là số lượng sản phẩm A được nhập về.
a) Viết công thức tính chi phí trung bình \overline C \left( x \right) mà công ty cần chi để sản xuất một sản phẩm.
b) Tìm các tiệm cận của đồ thị hàm số \overline C \left( x \right).
‒ Tìm tiệm cận đứng: Tính \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) hoặc \mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right), nếu một trong các giới hạn sau thoả mãn:
\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty
thì đường thẳng x = {x_0} là đường tiệm cận đứng.
‒ Tìm tiệm cận ngang: Nếu \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0} hoặc \mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0} thì đường thẳng y = {y_0} là đường tiệm cận ngang.
Advertisements (Quảng cáo)
a) Chi phí trung bình \overline C \left( x \right) = \frac{{50000000 + 10000x}}{x} (đồng).
b) Tập xác định: D = \mathbb{R}\backslash \left\{ { - 3;1} \right\}.
Ta có:
• \mathop {\lim }\limits_{x \to {0^ - }} \overline C \left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{50000000 + 10000x}}{x} = - \infty ;\mathop {\lim }\limits_{x \to {0^ + }} \overline C \left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{50000000 + 10000x}}{x} = + \infty
Vậy x = 0 là tiệm cận đứng của đồ thị hàm số đã cho.
• \mathop {\lim }\limits_{x \to + \infty } \overline C \left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{50000000 + 10000x}}{x} = 10000;\mathop {\lim }\limits_{x \to - \infty } \overline C \left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{50000000 + 10000x}}{x} = 10000
Vậy y = 10000 là tiệm cận ngang của đồ thị hàm số đã cho.