Chọn đúng hoặc sai cho mỗi ý a, b, c, d.
Đồ thị hàm số y = \frac{{{x^2} - 2{\rm{x}}}}{{x + 1}} có hai trục đối xứng là hai đường phân giác của các góc tạo bởi hai đường thẳng:
a) x = 1 và y = x - 3.
b) x = 1 và y = - x + 3.
c) x = - 1 và y = x - 3.
d) x = - 1 và y = x + 3.
‒ Tìm tiệm cận đứng: Tính \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) hoặc \mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right), nếu một trong các giới hạn sau thoả mãn:
\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty
thì đường thẳng x = {x_0} là đường tiệm cận đứng.
‒ Tìm tiệm cận xiên y = ax + b\left( {a \ne 0} \right):
a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} và b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - ax} \right] hoặc
Advertisements (Quảng cáo)
a = \mathop {\lim }\limits_{x \to - \infty } \frac{{f\left( x \right)}}{x} và b = \mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - ax} \right]
Tập xác định: D = \mathbb{R}\backslash \left\{ { - 1} \right\}.
Ta có:
• \mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ - }} \left( {\frac{{{x^2} - 2{\rm{x}}}}{{x + 1}}} \right) = - \infty ;\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ + }} \left( {\frac{{{x^2} - 2{\rm{x}}}}{{x + 1}}} \right) = + \infty
Vậy {\rm{x}} = - 1 là tiệm cận đứng của đồ thị hàm số đã cho.
• a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 2{\rm{x}}}}{{x\left( {x + 1} \right)}} = 1 và
b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - x} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{{{x^2} - 2{\rm{x}}}}{{x + 1}} - x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 3{\rm{x}}}}{{x + 1}} = - 3
Vậy đường thẳng y = x - 3 là tiệm cận xiên của đồ thị hàm số đã cho.
a) S.
b) S.
c) Đ.
d) S.