Chọn đúng hoặc sai cho mỗi ý a, b, c, d.
Hàm số \(y = \frac{{3{\rm{x}} + 1}}{{{\rm{x}} - 2}}\) có các tiệm cận là
a) \(x = 2\).
b) \({\rm{x}} = 3\).
c) \({\rm{y}} = 2\).
d) \({\rm{y}} = 3\).
‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn:
\(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \)
thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.
‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.
Advertisements (Quảng cáo)
Tập xác định: \(D = \mathbb{R}\backslash \left\{ 2 \right\}\).
Ta có:
• \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{3{\rm{x}} + 1}}{{{\rm{x}} - 2}} = - \infty ;\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{3{\rm{x}} + 1}}{{{\rm{x}} - 2}} = + \infty \)
Vậy \(x = 2\) là tiệm cận đứng của đồ thị hàm số đã cho.
• \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{3{\rm{x}} + 1}}{{{\rm{x}} - 2}} = 3;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{3{\rm{x}} + 1}}{{{\rm{x}} - 2}} = 3\)
Vậy \(y = 3\) là tiệm cận ngang của đồ thị hàm số đã cho.
a) Đ.
b) S.
c) S.
d) Đ.