Đồ thị hàm số \(y = \frac{{ - 4{\rm{x}} + 3}}{{2{\rm{x}} + 2}}\) có tâm đối xứng là điểm:
A. \(\left( { - 1; - 2} \right)\).
B. \(\left( { - 2; - 1} \right)\).
C. \(\left( { - 1; - 1} \right)\).
D. \(\left( { - 2; - 2} \right)\).
‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn:
\(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \)
thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.
Advertisements (Quảng cáo)
‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.
Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).
Ta có:
• \(\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ - }} \frac{{ - 4{\rm{x}} + 3}}{{2{\rm{x}} + 2}} = - \infty ;\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{ - 4{\rm{x}} + 3}}{{2{\rm{x}} + 2}} = + \infty \)
Vậy \(x = - 1\) là tiệm cận đứng của đồ thị hàm số đã cho.
• \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 4{\rm{x}} + 3}}{{2{\rm{x}} + 2}} = - 2;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - 4{\rm{x}} + 3}}{{2{\rm{x}} + 2}} = - 2\)
Vậy \(y = - 2\) là tiệm cận ngang của đồ thị hàm số đã cho.
Vậy \(I\left( { - 1; - 2} \right)\) là tâm đối xứng của đồ thị hàm số đã cho.
Chọn A.