Trang chủ Lớp 12 SBT Toán lớp 12 (sách cũ) Bài 2.30 trang 125 Sách bài tập Giải tích 12: Giải các...

Bài 2.30 trang 125 Sách bài tập Giải tích 12: Giải các phương trình mũ sau:...

Giải các phương trình mũ sau. Bài 2.30 trang 125 Sách bài tập (SBT) Giải tích 12 - Bài 5. Phương trình mũ và phương trình logarit

Giải các phương trình mũ sau:

a) \({(0,75)^{2x - 3}} = {(1\frac{1}{3})^{5 - x}}\)                                                                     

b) \({5^{{x^2} - 5x - 6}} = 1\)

c) \({(\frac{1}{7})^{{x^2} - 2x - 3}} = {7^{x + 1}}\)                                                                          

d) \({32^{\frac{{x + 5}}{{x - 7}}}} = 0,{25.125^{\frac{{x + 17}}{{x - 3}}}}\)

Hướng dẫn làm bài:

a) \({(\frac{3}{4})^{2x - 3}} = {(\frac{4}{3})^{5 - x}}\)

\( \Leftrightarrow {(\frac{3}{4})^{2x - 3}} = {(\frac{3}{4})^{x - 5}}\)

\(\Leftrightarrow 2x - 3 = x - 5 \Leftrightarrow x =  - 2\)

b)

Advertisements (Quảng cáo)

\(\begin{array}{l}
{5^{{x^2} - 5x - 6}} = {5^0} \Leftrightarrow {x^2} - 5x - 6 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = - 1\\
x = 6
\end{array} \right.
\end{array}\)

c) 

\(\begin{array}{l}
{(\frac{1}{7})^{{x^2} - 2x - 3}} = {(\frac{1}{7})^{ - x - 1}} \Leftrightarrow {x^2} - 2x - 3 = - x - 1 \Leftrightarrow {x^2} - x - 2 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = - 1\\
x = 2
\end{array} \right.
\end{array}\)

d) \({2^{5.\frac{{x + 5}}{{x - 7}}}} = {2^{ - 2}}{.5^{3.\frac{{x + 17}}{{x - 3}}}} <  =  > {2^{\frac{{5x + 25}}{{x - 7}} + 2}} = {5^{\frac{{3x + 51}}{{x - 3}}}} <  =  > {2^{\frac{{7x + 11}}{{x - 7}}}} = {5^{\frac{{3x + 51}}{{x - 3}}}}\)

Lấy logarit cơ số 2 cả hai vế, ta được:

\(\frac{{7x + 11}}{{x - 7}} = \frac{{3x + 51}}{{x - 3}}{\log _2}5 < = > \left\{ {\begin{array}{*{20}{c}}
{7{x^2} - 10x - 33 = (3{x^2} + 30x - 357){{\log }_2}5}\\
{x \ne 7,x \ne 3}
\end{array}} \right.\)

\( <  =  > (7 - 3{\log _2}5){x^2} - 2(5 + 15{\log _2}5) - (33 - 357{\log _2}5) = 0\)         

Ta có: \(\Delta ‘ = {(5 + 15{\log _2}5)^2} + (7 - 3{\log _2}5)(33 - 357{\log _2}5)\)

\( = 1296\log _2^25 - 2448{\log _2}5 + 256 > 0\)               

Phương trình đã cho có hai nghiệm: \(x = \frac{{5 + 15{{\log }_2}5 \pm \sqrt {\Delta ‘} }}{{7 - 3{{\log }_2}5}}\)  , đều thỏa mãn điều kiện 

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)