Giải các phương trình sau bằng phương pháp đồ thị:
a) \({\log _{\frac{1}{3}}}x = 3x\)
b) \({\log _3}x = - x + 11\)
c) \({\log _4}x = \frac{4}{x}\)
d) \({16^x} = {\log _{\frac{1}{2}}}x\)
Hướng dẫn làm bài:
a) Vẽ đồ thị của hàm số \({\log _{\frac{1}{3}}}x = 3x\) và đường thẳng y = 3x trên cùng một hệ trục tọa độ (H.61), ta thấy chúng cắt nhau tại điểm có hoành độ \(x = \frac{1}{3}\)
Advertisements (Quảng cáo)
Thử lại, ta thấy giá trị này thỏa mãn phương trình đã cho. Mặt khác, hàm số \(y = {\log _{\frac{1}{3}}}x\) luôn nghịch biến, hàm số y = 3x luôn đồng biến. Vậy \(x = \frac{1}{3}\) là nghiệm duy nhất của phương trình đã cho.
b) Vẽ đồ thị của hàm số \(y = {\log _3}x\) và đường thẳng y = - x + 11 trên cùng một hệ trục tọa độ (H.62) , ta thấy chúng cắt nhau tại điểm có hoành độ x = 9. Lập luận tương tự câu a), ta cũng có đây là nghiệm duy nhất của phương trình đã cho.
c) Vẽ đồ thị của các hàm số \(y = {\log _4}x\) và \(y = \frac{4}{x}\) trên cùng một hệ trục tọa độ (H.63), ta thấy chúng cắt nhau tại điểm có hoành độ x = 4. Ta cũng có hàm số \(y = {\log _3}x\) luôn đồng biến, hàm số \(y = \frac{4}{x}\) luôn nghịch biến trên \((0; + \infty )\) . Do đó, x = 4 là nghiệm duy nhất.
6
d) Vẽ đồ thị của các hàm số \(y = {16^x}\) và \(y = {\log _{\frac{1}{2}}}x\) trên cùng một hệ trục tọa độ (H.64), ta thấy chúng cắt nhau tại điểm có hoành độ \(x = \frac{1}{4}\) . Thử lại, ta thấy \(x = \frac{1}{4}\) thỏa mãn phương trình đã cho. Mặt khác, hàm số luôn đồng biến, hàm số luôn nghịch biến.
Vậy \(x = \frac{1}{4}\) là nghiệm duy nhất của phương trình.