Trang chủ Lớp 12 SBT Toán lớp 12 (sách cũ) Bài 2.4 trang 50 sách bài tập – Hình học 12: Cho...

Bài 2.4 trang 50 sách bài tập – Hình học 12: Cho hình chóp tứ giác đều S.ABCD có chiều cao SO = h và góc ....

Cho hình chóp tứ giác đều S.ABCD có chiều cao SO = h và góc . Tính diện tích xung quanh của hình nón đỉnh S và có đường tròn đáy ngoại tiếp hình vuông ABCD của hình chóp.. Bài 2.4 trang 50 sách bài tập (SBT) – Hình học 12. Bài 1. Khái niệm về mặt tròn xoay

Cho hình chóp tứ giác đều S.ABCD có chiều cao  SO = h và góc \(\widehat {SAB} = \alpha (\alpha  > {45^0})\) . Tính diện tích xung quanh của hình nón đỉnh S và có đường tròn đáy ngoại tiếp hình vuông ABCD của hình chóp.

Hướng dẫn làm bài:

Gọi r là bán kính đáy của hình nón ta có  OA = r, SO = h và SA = SB = SC = SD = l là đường sinh của hình nón.

Gọi I là trung điểm của đoạn AB, ta có:

\(\left\{ {\matrix{{S{A^2} = S{O^2} + O{A^2}} \cr {AI = SA.\cos \alpha } \cr} } \right. \Leftrightarrow \left\{ {\matrix{{{l^2} = {h^2} + {r^2}(1)} \cr {{{r\sqrt 2 } \over 2} = l\cos \alpha (2)} \cr} } \right.\)

\((2) \Rightarrow r = \sqrt 2 l\cos \alpha \)

Advertisements (Quảng cáo)

\((1) \Rightarrow {l^2} = {h^2} + 2{l^2}{\cos ^2}\alpha\)

\(\Rightarrow {h^2} = {l^2}(1 - 2{\cos ^2}\alpha )\)

\(\Rightarrow {l^2} = {{{h^2}} \over {1 - 2{{\cos }^2}\alpha }}\)

\(\Rightarrow l = {h \over {\sqrt {1 - 2{{\cos }^2}\alpha } }}\)

Do đó  \(r = \sqrt 2 l\cos \alpha  = {{\sqrt 2 h\cos \alpha } \over {\sqrt {1 - 2{{\cos }^2}\alpha } }}\)

\({S_{xq}} = \pi rl = \pi .{{\sqrt 2 h\cos \alpha } \over {\sqrt {1 - 2{{\cos }^2}\alpha } }}.{h \over {\sqrt {1 - 2{{\cos }^2}\alpha } }} = {{\pi \sqrt 2 {h^2}\cos \alpha } \over {1 - 2{{\cos }^2}\alpha }}\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)