Viết phương trình mặt phẳng \((\alpha )\) trong các trường hợp sau:
a) \((\alpha )\) đi qua điểm M(2;0; 1) và nhận \(\overrightarrow n = (1;1;1)\) làm vecto pháp tuyến;
b) \((\alpha )\) đi qua điểm A(1; 0; 0) và song song với giá của hai vecto \(\overrightarrow u = (0;1;1),\overrightarrow v = ( - 1;0;2)\);
c) \((\alpha )\) đi qua ba điểm M(1;1;1), N(4; 3; 2), P(5; 2; 1).
Hướng dẫn làm bài:
a) Phương trình \((\alpha )\) có dạng: (x – 2)+ (y) + (z – 1) = 0 hay x + y + z – 3 = 0
b) Hai vecto có giá song song với mặt phẳng \((\alpha )\) là: \(\overrightarrow u = (0;1;1)\) và \(\overrightarrow v = ( - 1;0;2)\).
Advertisements (Quảng cáo)
Suy ra \((\alpha )\) có vecto pháp tuyến là \(\overrightarrow n = \overrightarrow u \wedge \overrightarrow v = (2; - 1;1)\)
Mặt phẳng \((\alpha )\) đi qua điểm A(1; 0; 0) và nhận \(\overrightarrow n = (2; - 1;1)\) là vecto pháp tuyến. Vậy phương trình của \((\alpha )\) là: 2(x – 1) – y +z = 0 hay 2x – y + z – 2 = 0
c) Hai vecto có giá song song hoặc nằm trên \((\alpha )\) là: \(\overrightarrow {MN} = (3;2;1)\) và \(\overrightarrow {MP} = (4;1;0)\)
Suy ra \((\alpha )\) có vecto pháp tuyến là \(\overrightarrow n = \overrightarrow {MN} \wedge \overrightarrow {MP} = ( - 1;4; - 5)\)
Vậy phương trình của \((\alpha )\) là: -1(x – 1) + 4(y – 1) – 5(z – 1) = 0
hay x – 4y + 5z – 2 = 0