Trang chủ Lớp 12 SBT Toán lớp 12 (sách cũ) Bài 3.66 trang 134 sách bài tập (SBT) – Hình học 12:...

Bài 3.66 trang 134 sách bài tập (SBT) – Hình học 12: Cho hình chóp S.ABCD có đáy lầ hình thoi ABCD, AC cắt BD tại gốc...

Cho hình chóp S.ABCD có đáy lầ hình thoi ABCD, AC cắt BD tại gốc tọa độ O. Biết A(2; 0; 0), B(0; 1; 0), . Gọi M là trung điểm cạnh SC.. Bài 3.66 trang 134 sách bài tập (SBT) – Hình học 12 - ĐỀ TOÁN TỔNG HỢP - CHƯƠNG III

Cho hình chóp S.ABCD có đáy là hình thoi ABCD, AC cắt BD tại gốc tọa độ O. Biết A(2; 0; 0), B(0; 1; 0),\(S(0;0;2\sqrt 2 )\) . Gọi M là trung điểm cạnh SC.

a) Viết phương trình mặt phẳng chứa SA và song song với BM.

b) Tính khoảng cách giữa hai đường thẳng SA và BM.

Hướng dẫn làm bài

a) Ta có  C(-2; 0; 0) và \(M( - 1;0;\sqrt 2 )\)

Advertisements (Quảng cáo)

Gọi \((\alpha )\)  là mặt phẳng chứa SA và song song với BM. Hai vecto có giá song song hoặc nằm trên \((\alpha )\)  là \(\overrightarrow {SA}  = (2;0; - 2\sqrt 2 )\)  và \(\overrightarrow {BM}  = ( - 1; - 1;\sqrt 2 )\)

Suy ra vecto pháp tuyến của \((\alpha )\)   là : \(\overrightarrow n  = ( - 2\sqrt 2 ;0; - 2)\) hay \(\overrightarrow n ‘ = (\sqrt 2 ;0;1)\)

Mặt phẳng \((\alpha )\)  có phương trình: \(\sqrt 2 (x - 2) + z = 0\)  hay \(\sqrt 2 x + z - 2\sqrt 2  = 0\)

b) Ta có \(d\left( {SA,{\rm{ }}BM} \right){\rm{ }} = d(B;(\alpha )) = {{| - 2\sqrt 2 |} \over {\sqrt {2 + 1} }} = {{2\sqrt 2 } \over {\sqrt 3 }}\)

Vậy khoảng cách giữa hai đường thẳng SA và BM là  \({{2\sqrt 6 } \over 3}\).

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)