Bảng dưới đây thống kê cự li ném tạ của một vận động viên.
Hãy tính phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm trên.
Tính giá trị đại diện
Phương sai của mẫu số liệu ghép nhóm, kí hiệu \({S^2}\), được tính bởi công thức:
\({S^2} = \frac{1}{n}[{n_1}{({c_1} - \overline x )^2} + {n_2}{({c_2} - \overline x )^2} + ... + {n_k}{({c_k} - \overline x )^2}]\)
Trong đó: \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu
Advertisements (Quảng cáo)
\(\overline x = \frac{1}{n}({n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k})\) là số trung bình
Độ lệch chuẩn của mẫu số liệu ghép nhóm, kí hiệu \(S\), là căn bậc hai số học của phương sai.
Cỡ mẫu: n = 100
Số trung bình: \(\overline x = \frac{{13.19,25 + 45.19,75 + 24.20,25 + 12.20,75 + 6.21,25}}{{100}} = 20,015\)
Phương sai: \({S^2} = \frac{{13.19,{{25}^2} + 45.19,{{75}^2} + 24.20,{{25}^2} + 12.20,{{75}^2} + 6.21,{{25}^2}}}{{100}} - 20,{015^2} \approx 0,28\)
Độ lệch chuẩn: \(\sigma = \sqrt {0,28} \approx 0,53\)