Cho hình lăng trụ tam giác ABC.A′B′C′ có \(\overrightarrow {AA’} = \overrightarrow a ,\overrightarrow {AB} = \overrightarrow b ,\overrightarrow {AC} = \overrightarrow c \). Chứng minh rằng \(\overrightarrow {B’C} = \overrightarrow c - \overrightarrow a - \overrightarrow b \) và \(\overrightarrow {BC’} = \overrightarrow a - \overrightarrow b + \overrightarrow c \)
Áp dụng quy tắc 3 điểm
Advertisements (Quảng cáo)
Ta có: \(\overrightarrow {B’C} = \overrightarrow {B’A’} + \overrightarrow {A’A} + \overrightarrow {AC} = - \overrightarrow {AB} - \overrightarrow {AA’} + \overrightarrow {AC} = - \overrightarrow a - \overrightarrow b + \overrightarrow c = \overrightarrow c - \overrightarrow a - \overrightarrow b \)
\(\overrightarrow {BC’} = \overrightarrow {BA} + \overrightarrow {AC} + \overrightarrow {CC’} = - \overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AA’} = - \overrightarrow b + \overrightarrow c + \overrightarrow a = \overrightarrow a - \overrightarrow b + \overrightarrow c \)