Trang chủ Lớp 12 SGK Toán 12 - Cùng khám phá Mục 1 trang 2,3,4 Toán 12 tập 1 – Cùng khám phá:...

Mục 1 trang 2,3,4 Toán 12 tập 1 - Cùng khám phá: Hình 1.2 là đồ thị (C) của hàm số y = f(x) = - 1/2/x^2 + 3 Quan sát...

Sử dụng khái niệm hàm số đồng biến. Giải và trình bày phương pháp giải HĐ1, LT1, HĐ2, LT2 - Giải mục 1 trang 2,3,4 SGK Toán 12 tập 1 - Cùng khám phá - Bài 1. Tính đơn điệu và cực trị của hàm số. Tính đơn điệu của hàm số và dấu của đạo hàm...

Hoạt động (HĐ) 1

Hình 1.2 là đồ thị (C) của hàm số \(y = f(x) = \frac{{ - 1}}{2}{x^2} + 3\)

a) Quan sát đồ thị hàm số (C) và chỉ ra các khoảng đồng biến, nghịch biến của hàm số đã cho.

b) Xác định dấu của đạo hàm \(f'(x)\) khi \(x\)thuộc các khoảng đồng biến, nghịch biến ở câu.

c) Ghi lại và hoàn thành bảng biến thiên sau

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) Sử dụng khái niệm hàm số đồng biến, hàm số nghịch biến trên khoảng (a;b)

Hàm số \(y = f(x)\)gọi là đồng biến trên khoảng \((a;b)\) nếu với mọi \({x_1},{x_2} \in (a;b)\) mà \({x_1}

Hàm số \(y = f(x)\) gọi là nghịch biến trên khoảng \((a;b)\) nếu với mọi \({x_1},{x_2} \in (a;b)\) mà \({x_1} > {x_2}\) thì ta có \(f({x_1})

b) Chọn vài giá trị của x nằm trong khoảng đồng biến , nghịch biến ở câu a rồi thay vào \(f'(x)\)xem \(f'(x)\) có giá trị âm hay dương.

c) Áp dụng kết quả câu a và câu b rồi điền vào

Answer - Lời giải/Đáp án

a) Hàm số \(y = f(x)\) xác định trên R

Nhìn hình 1.2 ta thấy:

Hàm số \(f(x) = \frac{{ - 1}}{2}{x^2} + 3\) đồng biến trên khoảng \(( - \infty ;0)\)

Hàm số \(f(x) = \frac{{ - 1}}{2}{x^2} + 3\) nghịch biến trên khoảng \((0; + \infty )\)

b) Ta có \(f'(x) = - x\)

Ta thấy: Với \(x > 0\)thì \(f'(x)

Với \(x 0\)

c)


Luyện tập (LT) 1

Lập bảng biến thiên và kết luận các khoảng đồng biến, nghịch biến của hàm số.

a) \(y = f(x) = \frac{{2x - 1}}{{x + 3}}\)

b) \(y = f(x) = \cos x\) trên khoảng \((0;2\pi )\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Bước 1: Xét \(f'(x) = 0\)qua đó tìm x

Bước 2: Xét dấu \(f'(x)\)

Bước 3: lập bảng biến thiên

Answer - Lời giải/Đáp án

a) \(y = f(x) = \frac{{2x - 1}}{{x + 3}}\)

Hàm số trên xác định trên R\ {-3}

Ta có: \(f'(x) = \frac{{2(x + 3) - (2x - 1)}}{{{{(x + 3)}^2}}}\)

\(f'(x) = \frac{7}{{{{(x + 3)}^2}}}\)

Vì \(f'(x) > 0\)với \(\forall x \ne - 3\) từ đó ta có bảng biến thiên

Từ bảng biến thiên ta có,

Hàm số \(y = f(x) = \frac{{2x - 1}}{{x + 3}}\) đồng biến trên khoảng \(( - \infty ; - 3)\)và \(( - 3; + \infty )\)

b) \(y = f(x) = \cos x\) trên khoảng \((0;2\pi )\)

Advertisements (Quảng cáo)

Hàm số trên xác định trên R

Ta có \(y = f'(x) = - \sin x\)

Xét \(f'(x) = - \sin x = 0\) \( \Rightarrow x = k\pi \)

Mà \(x \in (0;2\pi )\) \( \Rightarrow x = \pi \)

Khi đó ta có bảng biến thiên

Từ bảng biến thiên ta có

Hàm số \(f(x) = \cos x\) đồng biến trên khoảng\((\pi ;2\pi )\)

Hàm số \(f(x) = \cos x\) nghịch biến trên khoảng\((0;\pi )\)


Hoạt động (HĐ) 2

Cho hàm số \(y = f(x) = {x^3} + 1\)

a) Bằng định nghĩa, hãy cho biết hàm \(f(x)\)có đồng biến trên \(R\) hay không

b) Hãy nhận xét về dấu của đạo hàm \(f'(x)\) trên \(R\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) Gọi \({x_1}\), \({x_2}\) sao cho \({x_1},{x_2} \in R\) và\({x_1} > {x_2}\)

Xét dấu của \(f({x_1}) - f({x_2})\)

b) Tính \(f'(x)\) qua đó xét dấu của \(f'(x)\)

Answer - Lời giải/Đáp án

a) Gọi \({x_1}\), \({x_2}\) sao cho \({x_1},{x_2} \in R\)và \({x_1} > {x_2}\)

Ta có: \(f({x_1}) - f({x_2})\)= \(({x_1} + 1) - ({x_2} + 1)\)= \({x_1} - {x_2}\)

Mà \({x_1} > {x_2}\) \( \Rightarrow {x_1} - {x_2} > 0\)

Nên \(f({x_1}) - f({x_2}) > 0\) \( \Rightarrow f({x_1}) > f({x_2})\)

Suy ra hàm số \(y = f(x) = {x^3} + 1\) đồng biến trên \(R\)

b) Ta có: \(f'(x) = 3{x^2}\)

Vì \(3{x^2} > 0\) với \(\forall x \in R\)

Nên \(f'(x) > 0\) với \(\forall x \in R\)


Luyện tập (LT) 2

Xét tính đơn điệu của hàm số \(y = \sin x - x\)trên khoảng \(( - \pi ;\pi )\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Bước 1: tính đạo hàm \(y’\)

Bước 2: xét dấu \(y’\) rồi lập bảng biến thiên

Bước 3: Từ bảng biến thiên nhận xét tính đơn điệu của hàm số

Answer - Lời giải/Đáp án

Hàm số đã cho xác định trên

Ta có: \(y’ = \cos x - 1\)

Vì \(\cos x \le 1\)với \(\forall x \in R\)

Nên \(y’ \le 0\)với \(\forall x \in R\)và \(y’ = 0\)tại \(x = 0\)

Khi đó ta có bảng biến thiên:

Vậy hàm số nghịch biến trên khoảng \(( - \pi ;\pi )\)

Advertisements (Quảng cáo)