Trong không gian Oxyz, cho hình hộp OABC.O’A’B’C’ có \(A\left( {1;1; - 1} \right),B\left( {0;3;0} \right),C’\left( {2; - 3;6} \right)\).a) Xác định tọa độ của điểm C.b) Xác định các tọa độ đỉnh còn lại của hình hộp.
Sử dụng kiến thức về tọa độ của vectơ theo tọa độ hai đầu mút để tìm tọa độ vectơ: Trong không gian Oxyz, cho hai điểm \(M\left( {{x_M},{y_M},{z_M}} \right)\) và \(N\left( {{x_N};{y_N};{z_N}} \right)\).
Khi đó, \(\overrightarrow {MN} = \left( {{x_N} - {x_M};{y_N} - {y_M};{z_N} - {z_M}} \right)\).
Advertisements (Quảng cáo)
a) Ta có: O(0; 0; 0)
Vì OABC.O’A’B’C’ là hình hộp nên AOBC là hình bình hành. Do đó:\(\overrightarrow {OA} = \overrightarrow {CB} \Rightarrow \left\{ \begin{array}{l}{x_A} = {x_B} - {x_C}\\{y_A} = {y_B} - {y_C}\\{z_A} = {z_B} - {z_C}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_C} = {x_A} - {x_B} = 1\\{y_C} = {y_A} - {y_B} = - 2\\{z_C} = {z_A} - {z_B} = - 1\end{array} \right. \Rightarrow C\left( {1; - 2; - 1} \right)\)
b) Vì OABC.O’A’B’C’ là hình hộp nên
\(\overrightarrow {OO’} = \overrightarrow {CC’} \Rightarrow \left\{ \begin{array}{l}{x_{O’}} = {x_{C’}} - {x_C} = 1\\{y_{O’}} = {y_{C’}} - {y_C} = - 1\\{z_{O’}} = {z_{C’}} - {z_C} = 7\end{array} \right. \Rightarrow O’\left( {1; - 1;7} \right)\)
\(\overrightarrow {AA’} = \overrightarrow {CC’} \Rightarrow \left\{ \begin{array}{l}{x_{A’}} - {x_A} = {x_{C’}} - {x_C} = 1\\{y_{A’}} - {y_A} = {y_{C’}} - {y_C} = - 1\\{z_{A’}} - {z_A} = {z_{C’}} - {z_C} = 7\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_{A’}} = 2\\{y_{A’}} = 0\\{z_{A’}} = 6\end{array} \right. \Rightarrow A’\left( {2;0;6} \right)\)
\(\overrightarrow {BB’} = \overrightarrow {CC’} \Rightarrow \left\{ \begin{array}{l}{x_{B’}} - {x_B} = \left( {{x_{C’}} - {x_C}} \right) = 1\\{y_{B’}} - {y_B} = \left( {{y_{C’}} - {y_C}} \right) = - 1\\{z_{B’}} - {z_B} = \left( {{z_{C’}} - {z_C}} \right) = 7\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_{B’}} = 1\\{y_{B’}} = 2\\{z_{B’}} = 7\end{array} \right. \Rightarrow B’\left( {1;2;7} \right)\)