Trang chủ Lớp 12 SGK Toán 12 - Kết nối tri thức Bài 2.7 trang 58 Toán 12 tập 1 – Kết nối tri...

Bài 2.7 trang 58 Toán 12 tập 1 - Kết nối tri thức: Cho hình chóp S. ABC. Trên cạnh SA, lấy điểm M sao cho \(SM = 2AM\). Trên cạnh BC...

Sử dụng kiến thức về quy tắc ba điểm để chứng minh: Nếu A, B,. Giải chi tiết bài tập 2.7 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức Bài 6. Vectơ trong không gian. Cho hình chóp S. ABC. Trên cạnh SA, lấy điểm M sao cho \(SM = 2AM\). Trên cạnh BC, lấy điểm N sao cho \(CN = 2BN\)...

Question - Câu hỏi/Đề bài

Cho hình chóp S.ABC. Trên cạnh SA, lấy điểm M sao cho \(SM = 2AM\). Trên cạnh BC, lấy điểm N sao cho \(CN = 2BN\). Chứng minh rằng \(\overrightarrow {MN} = \frac{1}{3}\left( {\overrightarrow {SA} + \overrightarrow {BC} } \right) + \overrightarrow {AB} \).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng kiến thức về quy tắc ba điểm để chứng minh: Nếu A, B, C là ba điểm bất kì thì \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \)

Sử dụng kiến thức về khái niệm tích của một số với một vectơ trong không gian để chứng minh: Trong không gian, tích của một số thực \(k \ne 0\) với một vectơ \(\overrightarrow a \ne \overrightarrow 0 \) là một vectơ, kí hiệu là \(k\overrightarrow a \) được xác định như sau:

- Cùng hướng với vectơ \(\overrightarrow a \) nếu \(k > 0\), ngược hướng với vectơ \(\overrightarrow a \) nếu \(k < 0\).

- Có độ dài bằng \(\left| k \right|\left| {\overrightarrow a } \right|\).

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Ta có: \(\overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AC} + \overrightarrow {CN} = \frac{1}{3}\overrightarrow {SA} + \overrightarrow {AB} + \overrightarrow {BC} + \frac{2}{3}\overrightarrow {CB} \)

\( = \frac{1}{3}\overrightarrow {SA} + \overrightarrow {BC} - \frac{2}{3}\overrightarrow {BC} + \overrightarrow {AB} = \frac{1}{3}\left( {\overrightarrow {SA} + \overrightarrow {BC} } \right) + \overrightarrow {AB} \) (đpcm)

Ta có: \(\overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AC} + \overrightarrow {CN} = \frac{1}{3}\overrightarrow {SA} + \overrightarrow {AB} + \overrightarrow {BC} + \frac{2}{3}\overrightarrow {CB} \)

\( = \frac{1}{3}\overrightarrow {SA} + \overrightarrow {BC} - \frac{2}{3}\overrightarrow {BC} + \overrightarrow {AB} = \frac{1}{3}\left( {\overrightarrow {SA} + \overrightarrow {BC} } \right) + \overrightarrow {AB} \) (đpcm)

Advertisements (Quảng cáo)