Trang chủ Lớp 12 Toán lớp 12 Nâng cao (sách cũ) Bài 16 trang 22 SGK Đại số và Giải tích 12 Nâng...

Bài 16 trang 22 SGK Đại số và Giải tích 12 Nâng cao, Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số:...

Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Bài 16 trang 22 SGK Đại số và Giải tích 12 Nâng cao - Bài 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Bài 16. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: \(f\left( x \right) = {\sin ^4}x + {\cos ^4}x\)

TXĐ: \(D=\mathbb R\)

\(\eqalign{
& f\left( x \right) = {\left( {{{\sin }^2}x} \right)^2} + {\left( {{{\cos }^2}x} \right)^2} + 2{\sin ^2}x{\cos ^2}x - 2{\sin ^2}x{\cos ^2}x \cr
& \,\,\,\,\,\,\,\,\,\,\, = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2} - 2{\sin ^2}x{\cos ^2}x = 1 - {1 \over 2}{\sin ^2}2x \cr} \)

Advertisements (Quảng cáo)

Vì \(0 \le {\sin ^2}2x \le 1\) nên: \(\,\,f\left( x \right) \le 1\) với mọi \(x \in {\mathbb{R}},f\left( 0 \right) = 1\). Vậy \(\mathop {\max f\left( x \right)}\limits_{x \in {\mathbb {R}}}  = 1\)

\(*\,\,\,f\left( x \right) \ge {1 \over 2}\) với mọi \(x \in {\mathbb{R}},f\left( {{\pi  \over 4}} \right) = 1 - {1 \over 2} = {1 \over 2}\)

Vậy \(\mathop {\min f\left( x \right)}\limits_{x \in {\mathbb {R}}}  = {1 \over 2}\).


Bạn đang xem bài tập, chương trình học môn Toán lớp 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: