Trang chủ Lớp 12 Toán lớp 12 Nâng cao (sách cũ) Bài 19 trang 196 SGK Đại số và Giải tích 12 Nâng...

Bài 19 trang 196 SGK Đại số và Giải tích 12 Nâng cao, Giải các phương trình bậc hai sau:...

Giải các phương trình bậc hai sau. Bài 19 trang 196 SGK Đại số và Giải tích 12 Nâng cao - Bài 2. Căn bậc hai của số phức và phương trình bậc hai

Bài 19

Tìm nghiệm phức của các phương trình bậc hai sau:

a) \({z^2} = z + 1\);

b) \({z^2} + 2z + 5 = 0\)

c) \({z^2} + \left( {1 - 3i} \right)z - 2\left( {1 + i} \right) = 0\).

Giải

a) Ta có \({z^2} = z + 1 \Leftrightarrow {z^2} - z = 1 \Leftrightarrow {z^2} - z + {1 \over 4} = {5 \over 4}\)

                              \( \Leftrightarrow {\left( {z - {1 \over 2}} \right)^2} = {5 \over 4} \Leftrightarrow z - {1 \over 2} =  \pm {{\sqrt 5 } \over 2} \Leftrightarrow z = {1 \over 2} \pm {{\sqrt 5 } \over 2}\)

Advertisements (Quảng cáo)

b) \({z^2} + 2z + 5 = 0 \Leftrightarrow {\left( {z + 1} \right)^2} =  - 4 = {\left( {2i} \right)^2} \Leftrightarrow \left[ \matrix{  z + 1 = 2i \hfill \cr  z + 1 =  - 2i \hfill \cr}  \right. \Leftrightarrow \left[ \matrix{  z =  - 1 + 2i \hfill \cr  z =  - 1 - 2i \hfill \cr}  \right.\)

Vậy \(S = \left\{ { - 1 + 2i; - 1 - 2i} \right\}\)

c) \({z^2} + \left( {1 - 3i} \right)z - 2\left( {1 + i} \right) = 0\) có biệt thức

                   \(\Delta  = {\left( {1 - 3i} \right)^2} + 8\left( {1 + i} \right) = 1 - 9 - 6i + 8 + 8i = 2i = {\left( {1 + i} \right)^2}\)

Do đó phương trình có hai nghiệm là: \({z_1} = {1 \over 2}\left[ { - 1 + 3i + \left( {1 + i} \right)} \right] = 2i\)

\({z_2} = {1 \over 2}\left[ { - 1 + 3i - \left( {1 + i} \right)} \right] =  - 1 + i\)

Vậy \(S = \left\{ {2i; - 1 + i} \right\}\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)