Trang chủ Lớp 12 Toán lớp 12 Nâng cao (sách cũ) Bài 51 trang 61 SGK giải tích 12 nâng cao,Khảo sát sự...

Bài 51 trang 61 SGK giải tích 12 nâng cao,Khảo sát sự biến thiên và vẽ đồ thị của hàm số: b) Chứng minh rằng giao điểm I của đường tiệm cận của đồ thị là tâm đối xứng...

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số:
b) Chứng minh rằng giao điểm I của đường tiệm cận của đồ thị là tâm đối xứng của đồ thị.
c) Tùy theo các giá trị của m, hãy biện luận số nghiệm của phương trình: Bài 51 trang 61 SGK giải tích 12 nâng cao - Bài 7. Khảo sát sự biến thiên và vẽ đồ thị hàm số của một số hàm phân thức hữu tỉ

Bài 51

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số: \(y = {{2{x^2} + 5x + 4} \over {x + 2}}\)

b) Chứng minh rằng giao điểm \(I\) của đường tiệm cận của đồ thị là tâm đối xứng của đồ thị.

c) Tùy theo các giá trị của \(m\), hãy biện luận số nghiệm của phương trình:

\({{2{x^2} + 5x + 4} \over {x + 2}} + m = 0\)

a) TXĐ: \(D =\mathbb R\backslash \left\{ { - 2} \right\}\)
\(\mathop {\lim }\limits_{x \to  - {2^ + }} y =  + \infty ;\,\,\mathop {\lim }\limits_{x \to  - {2^ - }} y =  - \infty \) nên \(x = -2\) là tiệm cận đứng.

Ta có: \(y = 2x + 1 + {2 \over {x + 2}}\)

\(\mathop {\lim }\limits_{x \to  \pm \infty } \left[ {y - \left( {2x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to  \pm \infty } {2 \over {x + 2}} = 0\) nên \(y = 2x + 1\) là tiệm cận xiên

\(\eqalign{
& y’ = 2 - {2 \over {{{\left( {x + 2} \right)}^2}}} = {{2\left[ {{{\left( {x + 2} \right)}^2} - 1} \right]} \over {{{\left( {x + 2} \right)}^2}}} = {{2\left( {x + 1} \right)\left( {x + 3} \right)} \over {{{\left( {x + 2} \right)}^2}}} \cr
& y’ = 0 \Leftrightarrow \left[ \matrix{
x = - 1;\,\,y\left( { - 1} \right) = 1 \hfill \cr
x = - 3;\,\,y\left( { - 3} \right) = - 7 \hfill \cr} \right. \cr} \)

Bảng biến thiên:

Advertisements (Quảng cáo)

Điểm đặc biệt: \(x = 0 \Rightarrow y = 2\)


b) Giao điểm hai đường tiệm cận của đồ thị là nghiệm của hệ.

\(\left\{ \matrix{
x = - 2 \hfill \cr
y = 2x + 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - 2 \hfill \cr
y = - 3 \hfill \cr} \right.\)

Vậy \(I\left( { - 2; - 3} \right)\)
Công thức đổi trục tịnh tiến theo véc tơ \(\overrightarrow {OI} \) là

\(\left\{ \matrix{
x = X - 2 \hfill \cr
y = Y - 3 \hfill \cr} \right.\)

Ta có:

\(\eqalign{
& Y - 3 = 2(X - 2) + 1 + {2 \over {X - 2 + 2}} \cr
& \Leftrightarrow Y - 3 = 2X - 4 + 1 + {2 \over X} \cr
& \Leftrightarrow Y = 2X + {2 \over X} \cr} \)

Hàm số là hàm số lẻ nên đồ thị của hàm số nhận gốc \(I\) làm tâm đối xứng.

c) Ta có: \({{2{x^2} + 5x + 4} \over {x + 2}} + m = 0 \Leftrightarrow {{2{x^2} + 5x + 4} \over {x + 2}} =  - m\)
Số nghiệm của phương trình chính là số giao điểm của đồ thị \((C)\) hàm số và đường thẳng \(y = -m\).
Dựa vào đồ thị ta có:
+) \(- m< -7\) hoặc \(–m>1\) \( \Leftrightarrow m > 7\) hoặc \(m< -1\) : phương trình có \(2\) nghiệm;
+) \(-m=-7\) hoặc \(–m = 1  \Leftrightarrow  m = 7\) hoặc \(m = -1\): phương trình có \(1\) nghiệm;
+) \(- 7<m< 1  \Leftrightarrow  -1 < m < 7\): phương trình vô nghiệm.

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)