Trang chủ Lớp 12 Toán lớp 12 Nâng cao (sách cũ) Bài 50 trang 61 SGK giải tích 12 nâng cao, Khảo sát...

Bài 50 trang 61 SGK giải tích 12 nâng cao, Khảo sát sự biến thiên và vẽ đồ thị hàm số sau:...

Khảo sát sự biến thiên và vẽ đồ thị hàm số sau. Bài 50 trang 61 SGK giải tích 12 nâng cao - Bài 7. Khảo sát sự biến thiên và vẽ đồ thị hàm số của một số hàm phân thức hữu tỉ

 Bài 50. Khảo sát sự biến thiên và vẽ đồ thị hàm số sau:

a) \(y = {{x + 1} \over {x - 1}}\)                       b) \(y = {{2x + 1} \over {1 - 3x}}\)

a) TXĐ: \(D =\mathbb R\backslash \left\{ 1 \right\}\)
 \(\mathop {\lim }\limits_{x \to {1^ + }} y =  + \infty ;\,\,\mathop {\lim }\limits_{x \to {1^ - }} y =  - \infty \) nên \(x = 1\) là tiệm cận đứng.
Vì \(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  - \infty }  = 1\) nên \(y = 1\) là tiệm cận ngang.

\(y = {{\left| \matrix{
1\,\,\,\,\,\,\,\,\,\,\,1 \hfill \cr
1\,\,\,\,\,\,\, - 1 \hfill \cr} \right|} \over {{{\left( {x - 1} \right)}^2}}} = {{ - 2} \over {{{\left( {x - 1} \right)}^2}}} < 0\) với mọi \(x \ne 1\)

Advertisements (Quảng cáo)

Hàm số nghịch biến trên mỗi khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\)
Đồ thị hàm số cắt trục tung tại điểm \((0;-1)\) cắt trục hoành tại điểm \((-1;0)\)
Đồ thị nhận giao điểm hai tiệm cận \(I(1;1)\) làm tâm đối xứng.


b) TXĐ: \(D =\mathbb R\backslash \left\{ {{1 \over 3}} \right\}\)
\(\mathop {\lim }\limits_{x \to {{\left( {{1 \over 3}} \right)}^ + }} y =  - \infty ;\,\mathop {\lim }\limits_{x \to {{\left( {{1 \over 3}} \right)}^ - }} y =  - \infty \) nên \(x = {1 \over 3}\) là tiệm cận đứng.
Vì \(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  - \infty }  =  - {2 \over 3}\) nên \(y =  - {2 \over 3}\) là tiệm cận ngang.

\(y = {{\left| \matrix{
2\,\,\,\,\,\,\,1 \hfill \cr
- 3\,\,\,\,1 \hfill \cr} \right|} \over {{{\left( {1 - 3x} \right)}^2}}} = {5 \over {{{\left( {1 - 3x} \right)}^2}}} > 0\) với mọi \(x \ne {1 \over 3}\)

   

Hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ;{1 \over 3}} \right)\) và \(\left( {{1 \over 3}; + \infty } \right)\)
Đồ thị cắt trục tung tại điểm \((0;1)\) và cắt trục hoành tại điểm \(\left( { - {1 \over 2};0} \right)\).
Đồ thị nhận giao điểm hai tiệm cận \(I\left( {{1 \over 3};{1 \over 2}} \right)\) làm tâm đối xứng.

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)