Trang chủ Lớp 12 Toán lớp 12 Nâng cao (sách cũ) Bài 53 Trang 177 SGK Đại số và Giải tích 12 Nâng...

Bài 53 Trang 177 SGK Đại số và Giải tích 12 Nâng cao, Tính thể tích của vật thể nằm giữa hai mặt phẳng và , biết rằng thiết diện của vật thể bị cắt bơi mặt phẳng vuông góc...

Tính thể tích của vật thể nằm giữa hai mặt phẳng và , biết rằng thiết diện của vật thể bị cắt bơi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là một nửa hình tròn đường kính .. Bài 53 Trang 177 SGK Đại số và Giải tích 12 Nâng cao - Ôn tập chương III - Nguyên hàm tích phân và ứng dụng

Bài 53. Tính thể tích của vật thể nằm giữa hai mặt phẳng \(x=0\) và \(x=2\), biết rằng thiết diện của vật thể bị cắt bơi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ \(\left( {0 \le x \le 2} \right)\) là một nửa hình tròn đường kính \(\sqrt 5 {x^2}\).

Diện tích của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ \(x\) là:

Advertisements (Quảng cáo)

\(S\left( x \right) = {1 \over 2}\pi {\left( {{{\sqrt 5 } \over 2}{x^2}} \right)^2} = {1 \over 2}.{{5\pi } \over 4}{x^4} = {{5\pi } \over 8}{x^4}\)

Vậy thể tích của vật thể là : \(V = \int\limits_0^2 {S\left( x \right)dx = {{5\pi } \over 8}} \int\limits_0^2 {{x^4}dx}  = \left. {{{5\pi } \over 8}.{{{x^5}} \over 5}} \right|_0^2 = 4\pi .\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)