Trang chủ Lớp 12 Toán lớp 12 Nâng cao (sách cũ) Bài 70 trang 125 SGK giải tích 12 nâng cao, Giải các...

Bài 70 trang 125 SGK giải tích 12 nâng cao, Giải các phương trình sau:...

Giải các phương trình sau. Bài 70 trang 125 SGK giải tích 12 nâng cao - Bài 7. Phương trình mũ và lôgarit

Bài 70. Giải các phương trình sau:

\(\eqalign{
& a)\,{3^{4x}} = {4^{3x}} \cr
& b)\,{3^{2 - {{\log }_3}x}} = 81x \cr} \)          

\(\eqalign{
& c)\,{3^x}{.8^{{x \over {x + 1}}}} = 36 \cr
& d)\,{x^6}{.5^{ - {{\log }_x}5}} = {5^{ - 5}} \cr} \)

\(\eqalign{
& a)\,{3^{4x}} = {4^{3x}} \Leftrightarrow {4^x}{\log _3}3 = {3^x}{\log _3}4 \Leftrightarrow {{{4^x}} \over {{3^x}}} = {\log _3}4 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow {\left( {{4 \over 3}} \right)^x} = {\log _3}4 \Leftrightarrow x = {\log _{{4 \over 3}}}\left( {{{\log }_3}4} \right) \cr} \)

Vậy \(S = \left\{ {{{\log }_{{4 \over 3}}}\left( {{{\log }_3}4} \right)} \right\}\)
b) Điều kiện: \(x > 0\)

Advertisements (Quảng cáo)

\(\eqalign{
& {3^{2 - {{\log }_3}x}} = 81x \Leftrightarrow {{{3^2}} \over {{3^{{{\log }_3}x}}}} = 81x \cr
& \Leftrightarrow {9 \over x} = 81x \Leftrightarrow {x^2} = {1 \over 9} \Leftrightarrow x = {1 \over 3}\,\,\left( {\text{ vì }\,x > 0} \right) \cr} \)

Vậy \(S = \left\{ {{1 \over 3}} \right\}\)
c) Lấy logarit cơ số 3 hai vế ta được:
\(x{\log _3}3 + {x \over {x + 1}}{\log _3}8 = x + {{3x} \over {x + 1}}{\log _3}2 = 2 + 2.{\log _3}2\)

\(\eqalign{
& \Leftrightarrow {x^2} + x + 3\left( {{{\log }_3}2} \right)x = 2x + 2 + 2(x+1)\left( {{{\log }_3}2} \right) \cr
& \Leftrightarrow {x^2} + \left( {{{\log }_3}2 - 1} \right)x - 2.{\log _3}2 -2= 0 \cr
& \Leftrightarrow \left[ \matrix{
x = 2 \hfill \cr
x = - 1 - {\log _3}2 \hfill \cr} \right. \cr} \)

Vậy \(S = \left\{ {2; - 1 - {{\log }_3}2} \right\}\)
d) Điều kiện: \(x > 0\);
Lấy logarit cơ số x hai vế ta được:

\(\eqalign{
& 6 + \left( { - {{\log }_x}5} \right).{\log _x}5 = - 5{\log _x}5 \cr
& \Leftrightarrow \log _x^25 - 5{\log _x}5 - 6 = 0 \cr
& \Leftrightarrow \left[ \matrix{
{\log _x}5 = - 1 \hfill \cr
{\log _x}5 = 6 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
5 = {x^{ - 1}} \hfill \cr
5 = {x^6} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = {1 \over 5} \hfill \cr
x = \root 6 \of 5 \hfill \cr} \right. \cr} \)

Vậy \(S = \left\{ {{1 \over 5};\root 6 \of 5 } \right\}\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)