Trang chủ Lớp 12 Toán lớp 12 (sách cũ) Bài 4 trang 140 giải tích 12: Bài 4. Phương trình bậc...

Bài 4 trang 140 giải tích 12: Bài 4. Phương trình bậc hai với hệ số thực...

Bài 4 trang 140 sgk giải tích 12: Bài 4. Phương trình bậc hai với hệ số thực. Bài 4. Cho a, b, c ε R, a # 0

Bài 4. Cho \(a, b, c \in \mathbb R\), \(a \ne 0\), \(z_1\) và \(z_2\) là hai nghiệm của phương trình \(a{z^2} + {\rm{ }}bz{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}0\)

Hãy tính \({z_1} + {z_2}\) và\({z_1} {z_2}\) theo các hệ số \(a, b, c\). 

Hướng dẫn giải:

Yêu cầu của bài toán này là kiểm chứng định lí Vi-ét đối với phương trình bậc hai trên tập số phức.

+) Trường hợp \(∆ ≥ 0\) ta đã biết kết quả theo định lí vi-ét.

Advertisements (Quảng cáo)

+) Trường hợp \(∆ < 0\), từ công thức nghiệm 

 \({z_1} =  \frac{-b+i\sqrt{|\bigtriangleup |}}{2a}\), \({z_2}= \frac{-b-i\sqrt{|\bigtriangleup |}}{2a}\) với \(|∆| = 4ac - b^2\)

\({z_1} + {z_2}\) = \( \frac{-b+i\sqrt{|\bigtriangleup |}-b-i\sqrt{|\bigtriangleup |}}{2a}=-\frac{b}{a}\)

\({z_1} {z_2} = \frac{(-b+i\sqrt{|\bigtriangleup |})(-b-i\sqrt{|\bigtriangleup |})}{2a.2a}=\frac{b^{2}+|\bigtriangleup |}{4a^{2}}=\frac{b^{2}+4ac-b^{2}}{4a^{2}}=\frac{c}{a}\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: