Trang chủ Lớp 12 Toán lớp 12 (sách cũ) Lý thuyết phương trình bậc hai với hệ số thực: Bài 4....

Lý thuyết phương trình bậc hai với hệ số thực: Bài 4. Phương trình bậc hai với hệ số thực...

Lý thuyết phương trình bậc hai với hệ số thực: Bài 4. Phương trình bậc hai với hệ số thực. Các căn bậc hai của số thực a < 0

- Các căn bậc hai của số thực \(a < 0\) là \(± i\sqrt{|a|}\)

- Xét phương trình bậc hai \(a{x^2} + bx + c= 0\) với \(a, b, c \in R\), \(a \ne 0\).

Đặt  \(\Delta  = {b^2}-4ac\).

- Nếu \(∆ = 0\) thì phương trình có một nghiệm kép (thực) \(x =  -\frac{b}{2a}\).

- Nếu \(∆ > 0\) thì phương trình có hai nghiệm thực

Advertisements (Quảng cáo)

\(x_{1,2}\)= \( \frac{-b \pm \sqrt{\bigtriangleup }}{2a}\)

- Nếu \(∆ < 0\) thì phương trình có hai nghiệm phức 

\(x_{1,2}\) = \( \frac{-b \pm i\sqrt{\bigtriangleup }}{2a}\)

Nhận xét. Trên \(\mathbb C\), mọi phương trình bậc hai đều có hai nghiệm (không nhất thiết phân biệt). Tổng quát, mọi phương trình bậc \(n\), \(n \in {\mathbb N }^*\) đều có \(n\) nghiệm phức (các nghiệm không nhất thiết phải phân biệt). 

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: