Bài 6 trang 49 sách giáo khoa hình học lớp 12: Bài 2. Mặt cầu. Bài 6. Gọi mặt cầu S(O; r) tiếp xúc với (P) tại I. Gọi M là một điểm nằm trên mặt cầu nhưng không phải là điểm đối xứng với I qua tâm O
Bài 6. Gọi mặt cầu \(S(O; r)\) tiếp xúc với \((P)\) tại \(I\). Gọi \(M\) là một điểm nằm trên mặt cầu nhưng không phải là điểm đối xứng với \(I\) qua tâm \(O\). Từ \(M\) kẻ hai tiếp tuyến cắt của mặt cầu cắt \((P)\) tại \(A\) và \(B\). Chứng minh rằng \( \widehat{AMB}= \widehat{AIB}\).
:
Theo tính chất của mặt cầu, ta có \(AI\) và \(AM\) là hai tiếp tuyến với cầu kẻ từ \(A\), cho nên \(AI = AM\), tương tự \(BI =BM\).
Advertisements (Quảng cáo)
Hai tam giác \(ABI\) và \(ABM\) bằng nhau (c.c.c)
\( \Rightarrow \widehat{AMB}= \widehat{AIB}\) (Hai góc tương ứng).