Trang chủ Lớp 12 Toán lớp 12 (sách cũ) Câu 5 trang 26 sgk hình học 12: Bài 3. Khái niệm...

Câu 5 trang 26 sgk hình học 12: Bài 3. Khái niệm về thể tích của khối đa diện...

Câu 5 trang 26 sgk hình học 12: Bài 3. Khái niệm về thể tích của khối đa diện. Cho tam giác ABC vuông cân ở A và AB = a. Trên đường thẳng qua C và vuông góc với mặt phẳng (ABC) lấy điểm D sao cho CD = a.

Câu 5. Cho tam giác \(ABC\) vuông cân ở \(A\) và \(AB = a\). Trên đường thẳng qua \(C\) và vuông góc với mặt phẳng \((ABC)\) lấy điểm \(D\) sao cho \(CD = a\). Mặt phẳng qua \(C\) vuông góc với \(SD\), cắt \(BD\) tại \(F\) và cắt \(AD\) tại \(E\). Tính thể tích khối tứ diện \(CDEF\) theo \(a\).

 

\(\left.\begin{matrix} BA \perp CD& \\ BA \perp CA& \end{matrix}\right\}\)\( \Rightarrow BA\bot (ADC)\) \(\Rightarrow BA \bot CE\)

Mặt khác \(BD \bot (CEF) \Rightarrow BD \bot CE\).

Từ đó suy ra

\(CE \bot (ABD) \Rightarrow CE ⊥ EF, CE \bot AD\).

Vì tam giác \(ACD\) vuông cân, \(AC= CD= a\) nên \(CE=\frac{AD}{2}=\frac{a\sqrt{2}}{2}\)

Advertisements (Quảng cáo)

Ta có \(BC = a\sqrt{2}\), \(BD = \sqrt{2a^{2}+a^{2}}=a\sqrt{3}\)

Để ý rằng \(CF\cdot BD = DC\cdot BC\) nên \(CF=\frac{a^{2}\sqrt{2}}{a\sqrt{3}}=a\sqrt{\frac{2}{3}}\)

Từ đó suy ra 

\(EF= \sqrt{CF^{2}-CE^{2}}=\sqrt{\frac{2}{3}a^{2}-\frac{a^{2}}{2}}=\frac{\sqrt{6}}{6}a\).

\(DF=\sqrt{DC^{2}-CF^{2}}=\sqrt{a^{2}-\frac{2}{3}a^{2}}=\frac{\sqrt{3}}{3}a\).

Từ đó suy ra \(S_{\Delta CEF}=\frac{1}{2}FE\cdot EC=\frac{1}{2}\frac{a\sqrt{6}}{6}\cdot \frac{a\sqrt{2}}{2}=\frac{a^{2}\sqrt{3}}{12}\)

Vậy \(V_{D.CEF}=\frac{1}{3}S_{\Delta CEF}\cdot DF=\frac{1}{3}\cdot \frac{a^{2}\sqrt{3}}{12}\cdot \frac{a\sqrt{3}}{3}=\frac{a^{3}}{36}.\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)