Trang chủ Lớp 6 SBT Toán lớp 6 (sách cũ) Câu 118 trang 20 SBT lớp 6 tập 1: Chứng tỏ rằng: ...

Câu 118 trang 20 SBT lớp 6 tập 1: Chứng tỏ rằng: Trong hai số tự nhiên liên tiếp, có một số chia hết...

Chứng tỏ rằng:
a) Trong hai số tự nhiên liên tiếp, có một số chia hết cho hai.
. Câu 118 trang 20 Sách Bài Tập (SBT) lớp 6 tập 1 - Bài 10: Tính chất chia hết của một tổng.

Chứng tỏ rằng:

a) Trong hai số tự nhiên liên tiếp, có một số chia hết cho hai.

b) Trong ba số tự nhiên liên tiếp, có một số chia hết cho ba.

a) Gọi hai số tự nhiên liên tiếp là a và a + 1

Nếu a chia hết cho 2 thì bài toán được chứng minh .

Nếu a không chia hết cho 2 thì  a = 2k + 1 ( k ∈ N)

Suy ra : a + 1 = 2k + 1 + 1

Ta có : 2k  ⋮  2 ; 1 + 1 = 2  ⋮  2

Advertisements (Quảng cáo)

Suy ra  ( 2k +1 +1 ) ⋮  2 hay ( a+ 1) ⋮  2

Vậy trong hai số tự nhiên liên tiếp , có một số chia hết cho 2

b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2

Nếu a chia hết cho 3 thì bài toán được chứng minh

Nếu a không chia hết cho 3 thì a = 3k + 1  hoặc  a = 3k + 2 ( k ∈ N)

Nếu a = 3k + 1 thì a + 2 = 3k + 1 + 2 = 3k + 3  ⋮ 3

Nếu a = 3k + 2 thì a + 1 = 3k + 2 + 1 = 3k + 3  ⋮ 3

Vậy trong ba số tự nhiên liên tiếp có một số chia hết cho 3.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 6 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)