Ở Hình 20 có hai góc AOB và BOC là hai góc kề bù, \(\widehat {AOB} = 3\widehat {BOC}\), \(\widehat {AOD} = \widehat {BOC}\).
a) Tính số đo góc BOC.
b) Tia OB có là tia phân giác của góc COD hay không?
a) Tính số đo góc cần tìm dựa vào dữ kiện đề bài và tổng hai góc kề bù có số đo bằng 180°.
Advertisements (Quảng cáo)
b) Muốn biết tia OB có là tia phân giác của góc COD hay không, ta tính số đo của hai góc tại bởi tia OB và tia OC, OD.
a) Ta có:
\(\begin{array}{l}\widehat {AOB} + \widehat {BOC} = \widehat {AOC} = 180^\circ \to 3\widehat {BOC} + \widehat {BOC} = 180^\circ \\ \to 4\widehat {BOC} = 180^\circ \Rightarrow \widehat {BOC} = \widehat {AOD} = 180^\circ :4 = 45^\circ \end{array}\)
Vậy \(\widehat {BOC} = 45^\circ \).
b) Ta có: \(\widehat {BOD} = \widehat {AOC} - \widehat {AOD} - \widehat {BOC} = 180^\circ - 45^\circ - 45^\circ = 90^\circ \).
Mà \(\widehat {BOC} = 45^\circ < \widehat {BOD} = 90^\circ \) nên tia OB không là tia phân giác của góc COD.