Cho hai phân thức \({1 \over {{x^2} + 7x - 15}}\) và \({2 \over {{x^2} - 2x - 3}}\)
Chứng tỏ rằng có thể chọn đa thức \({x^3} - 7{x^2} + 7x + 15\) làm mẫu thức chung để quy đồng mẫu thức hai phân thức đã cho. Hãy quy đồng mẫu thức.
Advertisements (Quảng cáo)
Suy ra: \({x^3} - 7{x^2} + 7x + 15 = \left( {{x^2} - 4x - 5} \right)\left( {x - 3} \right)\)
Suy ra: \({x^3} - 7{x^2} + 7x + 15 = \left( {{x^2} - 2x - 3} \right)\left( {x - 5} \right)\)
\(\eqalign{ & {1 \over {{x^2} - 4x - 5}} = {{1.\left( {x - 3} \right)} \over {\left( {{x^2} - 4x - 5} \right).\left( {x - 3} \right)}} = {{x - 3} \over {{x^3} - 7{x^2} + 7x + 15}} \cr & {2 \over {{x^2} - 2x - 3}} = {{2.\left( {x - 5} \right)} \over {\left( {{x^2} - 2x - 3} \right)\left( {x - 5} \right)}} = {{2\left( {x - 5} \right)} \over {{x^3} - 7{x^2} + 7x + 15}} \cr} \)