Dùng định nghĩa hai phân thức bằng nhau, hãy tìm đa thức A trong mỗi đẳng thức sau:
a. A2x−1=6x2+3x4x2−1
b. 4x2−3x−7A=4x−72x+3
c. 4x2−7x+3x2−1=Ax2+2x+1
d. x2−2x2x2−3x−2=x2+2xA
a. A2x−1=6x2+3x4x2−1
⇒A(4x2−1)=(2x−1).(6x2+3x)
⇒A(2x−1)(2x+1)=(2x−1).3x(2x+1)
⇒A=3x
Advertisements (Quảng cáo)
Ta có: 3x2x−1=6x2+3x4x2−1
b. 4x2−3x−7A=4x−72x+3
⇒(4x2−3x−7)(2x+3)=A(4x−7)⇒(4x2+4x−7x−7)(2x+3)=A(4x−7)⇒[4x(x+1)−7(x+1)](2x+3)=A(4x−7)⇒(x−1)(4x−7)(2x+3)=A(4x−7)⇒A=(x+1)(2x+3)=2x2+3x+2x+3=2x2+5x+3
Ta có: 4x2−3x−72x2+5x+3=4x−72x+3
c. 4x2−7x+3x2−1=Ax2+2x+1
⇒(4x2−7x+3).(x2+2x+1)=A.(x2−1)(π2−θ)⇒(4x2−4x−3x+3).(x+1)2=A(x+1)(x−1)⇒[4x(x−1)−3(x−1)].(x+1)2=A(x+1)(x−1)⇒(x−1)(4x−3)(x+1)2=A(x+1)(x−1)⇒A=(4x−3)(x+1)=4x2+4x−3x−3=4x2+x−3
Ta có: 4x2−7x+3x2−1=4x2+x−3x2+2x+1
d. x2−2x2x2−3x−2=x2+2xA
⇒(x2−2x).A=(2x2−3x−2)(x2+2x)⇒x(x−2).A=(2x2−4x+x−2).x(x+2)⇒x(x−2).A=[2x(x−2)+(x−2)].x(x+2)⇒x(x−2).A=(2x+1)(x−2).x.(x+2)⇒A=(2x+1)(x+2)=2x2+4x+x+2=2x2+5x+2
Ta có : x2−2x2x2−3x−2=x2+2xx2+2x+1