Trang chủ Lớp 8 SBT Toán lớp 8 (sách cũ) Câu 3.5 trang 8 Sách bài tập Toán 8 tập 1: Chứng...

Câu 3.5 trang 8 Sách bài tập Toán 8 tập 1: Chứng minh hằng đẳng thức:...

Chứng minh hằng đẳng thức: Câu 3.5 trang 8 Sách bài tập (SBT) Toán 8 tập 1 - Bài 3 4 5. Những hằng đẳng thức đáng nhớ

Chứng minh hằng đẳng thức: \({\left( {a + b + c} \right)^3} = {a^3} + {b^3} + {c^3} + 3\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right)\)

Giải:

Biến đổi vế trái:

Advertisements (Quảng cáo)

 \(\eqalign{  & {\left( {a + b + c} \right)^3} = {\left[ {\left( {a + b} \right) + c} \right]^3} = {\left( {a + b} \right)^3} + 3{\left( {a + b} \right)^2}c + 3\left( {a + b} \right){c^2} + {c^3}  \cr  &  = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} + 3\left( {{a^2} + 2ab + {b^2}} \right)c + 3a{c^2} + 3b{c^2} + {c^3}  \cr  &  = {a^3} + {b^3} + {c^3} + 3{a^2}b + 3a{b^2} + 3{a^2}c + 6abc + 3{b^2}c + 3a{c^2} + 3b{c^2}  \cr  &  = {a^3} + {b^3} + {c^3} + 3ab\left( {a + b} \right) + 3ac\left( {a + b} \right) + 3bc\left( {a + b} \right) + 3{c^2}\left( {a + b} \right)  \cr  &  = {a^3} + {b^3} + {c^3} + 3\left( {a + b} \right)\left( {ab + ac + bc + {c^2}} \right)  \cr  &  = {a^3} + {b^3} + {c^3} + 3\left( {a + b} \right)\left[ {a\left( {b + c} \right) + c\left( {b + c} \right)} \right]  \cr  &  = {a^3} + {b^3} + {c^3} + 3\left( {a + b} \right)\left( {b + c} \right)\left( {a + c} \right) \cr} \)

Vế trái bằng vế phải đẳng thức được chứng minh.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 8 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)