Dựng hình thang ABCD, biết hai đáy AB = 2cm, CD = 4cm, \(\widehat C = {50^0},\widehat D = {70^0}\).
Phân tích: Giả sử hình thang ABCD thỏa mãn yêu cầu bài toán. Qua A kẻ đường thẳng song song với BC cắt CD tại E. Hình thang ABCE có hai cạnh bên song song nên AB = EC = 2cm do đó DE = 2cm
Tam giác ADE dựng được vì biết 2 góc kề với một cạnh.
Điểm C nằm trên tia DE cách D một khoảng bằng 4cm
Điểm B thỏa mãn hai điều kiện:
- B nằm trên đường thẳng đi qua A và song song với CD.
- B nằm trên đường thẳng đi qua C và song song với AE.
Cách dựng:
- Dựng tam giác ADE biết DE = 2cm, \(\widehat D = {70^0},\widehat E = {50^0}\)
- Dựng tia DE lấy điểm C sao cho DC = 4cm
Advertisements (Quảng cáo)
- Dựng tia Ax // CD, Ax nằm trên nửa mặt phẳng bờ AD chứa điểm C
- Dựng tia Cy // AE, Cy nằm trên nửa mặt phẳng bờ CD chứa điểm A. Cy cắt Ax tại B. Hình thang ABCD cần dựng.
Chứng minh:
Tứ giác ABCD là hình thang vì AB // CD
CD = CE + ED ⇒ CE = CD – ED = 4 – 2 =2 (cm)
Hình thang ABCE có hai cạnh bên AE // CB
⇒ AB = CE = 2 (cm)
\(\widehat C = \widehat E = {50^0}\) (hai góc đồng vị)
\(\widehat D = {70^0}\)
Hình thang ABCD thỏa mãn điều kiện bài toán.
Biện luận: Tam giác ADE luôn dựng được, hình thang ABCD luôn dựng được. Ta dựng được một hình thang thỏa mãn điều kiện bài toán.