Bạn Giang đã vẽ một đa giác ABCDEFGHI như ở hình bs. 26.
Tính diện tích của đa giác đó, biết rằng : KH song song với BC (K thuộc EF); BC song song với GF; CF song song với BG; BG vuông góc với GF; CK song song với DE; CD song song với FE; KE = DE và KE vuông góc với DE; I là trung điểm của BH, AI = IH và AI vuông góc với IH; HK = 11cm, CF = 6cm. HK cắt CF tại J và JK = 3 (cm), JF = 2cm. BG cắt HK tại M và HM = 2cm.
Giải:
Chia đa giác đó thành hình vuông CDEK, hình thang KFGH, hình thang BCKH và tam giác vuông AIB
Ta có: MJ = KH – KJ – MH = 11 – 2 – 3 = 6(cm)
⇒ BC = GF = MJ = 6 (cm)
CJ = CF – FG = 6 – 2 = 4 (cm)
SKFGH=HK+GF2.FJ=11+62.2=17(cm2)SBCKH=BC+KH2.CJ=11+62.4=34(cm2)
Trong tam giác vuông CJK có ˆJ=90∘. Theo định lý Pi-ta-go ta có:
Advertisements (Quảng cáo)
CK2=CJ2+JK2=16+9=25⇒CK=5 (cm)
SCDEK=CK2=52=25 (cm2 )
Trong tam giác vuông BMH có ˆM=90∘.Theo định lý Pi-ta-go ta có:
BH2=BM2+HM2
mà BM = CJ = 4(cm) (đường cao hình thang BCKH)
⇒BH2=42+22=20IB=BH2⇒IB2=BH24=204=5IB=√5(cm)
∆ AIB vuông cân tại I (vì AI = IH = IB)
SAIB=12AI.IB=12IB2=52 ( cm2 )
S=SCDEK+SKFGH+SBCKH+SAIB=25+17+34+52=1572 (cm2 )