Trang chủ Lớp 8 SBT Toán lớp 8 (sách cũ) Câu 88 trang 157 Sách bài tập Toán 8 tập 2: Cho...

Câu 88 trang 157 Sách bài tập Toán 8 tập 2: Cho hình chóp cụt tứ giác đều ABCD.A’B’C’D’ có các cạnh đáy là a và...

Cho hình chóp cụt tứ giác đều ABCD.A’B’C’D’ có các cạnh đáy là a và 2a, chiều cao của mặt bên là a.. Câu 88 trang 157 Sách bài tập (SBT) Toán 8 tập 2 - Ôn tập chương IV - Hình lăng trụ đứng. Hình chóp đều

Cho hình chóp cụt tứ giác đều ABCD.A’B’C’D’ có các cạnh đáy là a và 2a, chiều cao của mặt bên là a.

a. Tính diện tích xung quanh của hình chóp cụt.

b. Tính độ dài cạnh bên và chiều cao hình chóp cụt.

(hình trang 173 sgbt)

a. Một mặt bên của hình chóp cụt là một hình thang có hai đáy là a và 2a; đường cao bằng a.

Diện tích mặt bên là:

\(S = \left( {a + 2a} \right):2.a = {3 \over 2}{a^2}\) (đvdt)

Diện tích xung quanh hình nón cụt:

\({S_{xq}} = 4.{3 \over 2}{a^2} = 6{a^2}\)  (đvdt)

Advertisements (Quảng cáo)

b. Kẻ A’H ⊥ AB

Ta có K là trung điểm của AB, I là trung điểm của A’B’, O và O’ là tâm của hai hình vuông đáy.

Ta có: \(A’I = {a \over 2};AK = a \Rightarrow AH = {a \over 2}\)

Áp dụng định lí Pi-ta-go vào tam giác vuông AA’H, ta có:

\(A'{A^2} = A'{H^2} + A{H^2} = {a^2} + {{{a^2}} \over 4} = {{5{a^2}} \over 4}\)

Suy ra: \(AA’ = \sqrt {{{5{a^2}} \over 4}} \)

Kẻ IE ⊥ OK, ta có: OK = a \( \Rightarrow EK = {a \over 2}\)

Áp dụng định lí Pi-ta-go vào tam giác vuông IEK, ta có:

\(I{K^2} = I{E^2} + E{K^2} = {a^2} - {\left( {{a \over 2}} \right)^2} = {{3{a^2}} \over 4}\)

Vậy \(IE = \sqrt {{{3{a^2}} \over 4}} \)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 8 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)