Trang chủ Lớp 8 SGK Toán 8 - Chân trời sáng tạo Bài 5 trang 80 Toán 8 tập 1– Chân trời sáng tạo:...

Bài 5 trang 80 Toán 8 tập 1– Chân trời sáng tạo: Cho hình bình hành \(ABCD\)...

a) Áp dụng dấu hiệu nhận biết hình thangb) Áp dụng tính chất của trọng tâm Phân tích và giải bài 5 trang 80 SGK Toán 8 tập 1– Chân trời sáng tạo Bài 4. Hình bình hành - Hình thoi. Cho hình bình hành...

Question - Câu hỏi/Đề bài

Cho hình bình hành \(ABCD\). Gọi \(I\) và \(K\) lần lượt là trung điểm của các cạnh \(AB\) và \(CD\); \(E\) và \(F\) lần lượt là giao điểm của \(AK\) và \(CI\) với \(BD\).

a) Chứng minh tứ giác \(AEFI\) là hình thang

b) Chứng minh \(DE = EF = FB\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Advertisements (Quảng cáo)

a) Áp dụng dấu hiệu nhận biết hình thang

b) Áp dụng tính chất của trọng tâm

Answer - Lời giải/Đáp án

a) Vì \(ABCD\) là hình bình hành (gt)Suy ra \(AB\) // \(CD\), \(AD\) // \(BC\); \(AB = CD\); \(AD = BC\)Mà \(IA = IB = \frac{{AB}}{2}\); \(KD = KC = \frac{{CD}}{2}\) (do \(I\),\(K\) là trung điểm)Suy ra \(IA = IB = KD = KC\)Xét tứ giác \(AKCI\) có:\(AI = KC\) (cmt)\(AI\) // \(KC\)Suy ra \(AKCI\) là hình bình hànhSuy ra \(IC\) // \(AK\)Hay \(IF\) // \(AE\)Suy ra \(AEFI\) là hình thangb) Vì \(ABCD\), \(AKCI\) là hình bình hành (gt)Suy ra \(O\) là trung điểm của \(AC\), \(BD\), \(KI\)Suy ra \(OD = OB = \frac{1}{2}BD\) (1)Xét tam giác \(ADC\) có hai trung tuyến \(AK\), \(DO\) cắt nhau tại \(E\)Suy ra \(E\) là trọng tâm của tam giácSuy ra \(ED = \frac{2}{3}DO\) (2)Chứng minh tương tự ta có \(BF = \frac{2}{3}BO\) (3)Từ (1), (2), (3) suy ra \(ED = BF = \frac{1}{3}BD\)Suy ra \({\rm{EF}} = \frac{1}{3}BD\)Vậy \(DE = EF = FB\)

Advertisements (Quảng cáo)