Trang chủ Lớp 8 Toán lớp 8 (sách cũ) Bài 21 trang 17 sgk Toán 8 tập 2, Bài 21. Giải...

Bài 21 trang 17 sgk Toán 8 tập 2, Bài 21. Giải các phương trình:...

Bài 21. Giải các phương trình. Bài 21 trang 17 sgk toán 8 tập 2 - Phương trình tích

Bài 21. Giải các phương trình:

a) (3x - 2)(4x + 5) = 0;                         b) (2,3x - 6,9)(0,1x + 2) = 0;

c) (4x + 2)(x2 +  1) = 0;                         d) (2x + 7)(x - 5)(5x + 1) = 0;

Hướng dẫn giải:

a) (3x - 2)(4x + 5) = 0

⇔ 3x - 2 = 0 hoặc 4x + 5 = 0

1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = \( \frac{2}{3}\)

2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = \( -\frac{5}{4}\)

Vậy phương trình có tập nghiệm S = \( \left \{ \frac{2}{3};\frac{-5}{4} \right \}\).

b) (2,3x - 6,9)(0,1x + 2) = 0

⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3

Advertisements (Quảng cáo)

2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.

Vậy phương trình có tập hợp nghiệm S = {3;-20}

c) (4x + 2)(x2 +  1) = 0 ⇔ 4x + 2 = 0 hoặc x2 +  1 = 0

1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = \( -\frac{1}{2}\)

2) x2 +  1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)

Vậy phương trình có tập hợp nghiệm S = \( \left \{ -\frac{1}{2} \right \}\).

d) (2x + 7)(x - 5)(5x + 1) = 0

⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = \( -\frac{7}{2}\)

2) x - 5 = 0 ⇔ x = 5

3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = \( -\frac{1}{5}\).

Vậy phương trình có tập nghiệm là S = \( \left \{ -\frac{7}{2};5;-\frac{1}{5} \right \}\) 

Bạn đang xem bài tập, chương trình học môn Toán lớp 8 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)