Trang chủ Lớp 8 Toán lớp 8 (sách cũ) Bài 52 trang 96 sgk Toán 8 tập 1, Cho hình bình...

Bài 52 trang 96 sgk Toán 8 tập 1, Cho hình bình hành ABCD. Gọi E là điểm đối xứng với D qua điểm A, gọi F là điểm đối xứng với D qua điểm C. Chứng minh rằng điểm E đối xứng với ...

Cho hình bình hành ABCD. Gọi E là điểm đối xứng với D qua điểm A, gọi F là điểm đối xứng với D qua điểm C. Chứng minh rằng điểm E đối xứng với điểm F qua điểm B.. Bài 52 trang 96 sgk toán 8 tập 1 - Đối xứng tâm

Bài 52. Cho hình bình hành \(ABCD\). Gọi \(E\) là điểm đối xứng với \(D\) qua điểm \(A\), gọi \(F\) là điểm đối xứng với \(D\) qua điểm \(C\). Chứng minh rằng điểm \(E\) đối xứng với điểm \(F\) qua điểm \(B\).

                                                  

\(AE // BC\) (vì \(AD // BC\))

\(AE = BC\) (cùng bằng \(AD\))

nên \(ACBE\) là hình bình hành theo dấu hiệu nhận biết hình bình hành.

Suy ra: \(BE // AC, BE = AC\)       (1)

Tương tự \(BF // AC, BF = AC\)    (2)

\(BE\) và \(BF\) cùng song song với \(AC\) và cùng đi qua điểm \(B\) nên theo tiên đề Ơ -clit \(BE\) trùng \(BF\), hay \(B,E,F\) thẳng hàng.

Từ (1) và (2) \( BE = BF\) do đó \(B\) là trung điểm của \(EF\).

Vậy \(E\) đối xứng với \(F\) qua \(B\).

Bạn đang xem bài tập, chương trình học môn Toán lớp 8 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: