Làm tính trừ phân thức: \(\dfrac{{x + 3}}{{{x^2} - 1}} - \dfrac{{x + 1}}{{{x^2} - x}}\)
Quy tắc: Muốn trừ phân thức \( \dfrac{A}{B}\) cho phân thức \( \dfrac{C}{D}\), ta cộng \( \dfrac{A}{B}\) với phân thức đối của \( \dfrac{C}{D}\)
Advertisements (Quảng cáo)
\(\eqalign{
& {x^2} - 1 = \left( {x - 1} \right)\left( {x + 1} \right) \cr
& {x^2} - x = x\left( {x - 1} \right) \cr
& \Rightarrow MTC = x\left( {x - 1} \right)\left( {x + 1} \right) \cr} \)
\(\eqalign{
& {{x + 3} \over {{x^2} - 1}} - {{x + 1} \over {{x^2} - x}} \cr
& = {{x + 3} \over {{x^2} - 1}} + \left( { - {{x + 1} \over {{x^2} - x}}} \right) \cr
& = {{x + 3} \over {{x^2} - 1}} + {{ - x - 1} \over {{x^2} - x}} \cr
& = {{x + 3} \over {\left( {x - 1} \right)\left( {x + 1} \right)}} + {{ - x - 1} \over {x\left( {x - 1} \right)}} \cr
& = {{x\left( {x + 3} \right)} \over {x\left( {x - 1} \right)\left( {x + 1} \right)}} + {{\left( { - x - 1} \right)\left( {x + 1} \right)} \over {x\left( {x - 1} \right)\left( {x + 1} \right)}} \cr
& = {{{x^2} + 3x} \over {x\left( {x - 1} \right)\left( {x + 1} \right)}} + {{ - {x^2} - x - x - 1} \over {x\left( {x - 1} \right)\left( {x + 1} \right)}} \cr
& = {{{x^2} + 3x} \over {x\left( {x - 1} \right)\left( {x + 1} \right)}} + {{ - {x^2} - 2x - 1} \over {x\left( {x - 1} \right)\left( {x + 1} \right)}} \cr
& = {{{x^2} + 3x - {x^2} - 2x - 1} \over {x\left( {x - 1} \right)\left( {x + 1} \right)}} \cr
& = {{x - 1} \over {x\left( {x - 1} \right)\left( {x + 1} \right)}} = {1 \over {x\left( {x + 1} \right)}} \cr} \)