Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 16 trang 159 SBT Toán 9 Tập 1: Chứng minh rằng...

Câu 16 trang 159 SBT Toán 9 Tập 1: Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường...

a) Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn.. Câu 16 trang 159 Sách bài tập (SBT) Toán 9 Tập 1 - Bài 2. Đường kính và dây của đường tròn

Tứ giác ABCD có \(\widehat B = \widehat D = 90^\circ \).

a)      Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn.

b)      So sánh độ dài AC và BD. Nếu AC = BD thì tứ giác ABCD là hình gì?

a) Gọi M là trung điểm  của AC.

Tam giác ABC vuông tại B có BM là đường trung tuyến nên:

Advertisements (Quảng cáo)

\(BM = {1 \over 2}AC\) (tính chất tam giác vuông)

Tam giác ACD vuông tại D có DM là đường trung tuyến nên:

\(DM = {1 \over 2}AC\) (tính chất tam giác vuông)

Suy ra: MA = MB = MC = MD.

Vậy bốn điểm A, B, C, D cùng nằm trên một đường tròn tâm M bán kính bằng \({1 \over 2}AC\).

b) BD là dây của đường tròn (I), còn AC là đường kính nên AC ≥ BD

AC = BD khi và chỉ khi BD cũng là đường kính, khi đó ABCD là hình chữ nhật

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)